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Trends for Earth Observation Mission Planning

Trends Very High Resolution Agile EO Satellites
» Constellation of satellites: from 2-4 to 10s to 100s of platforms
» Smaller instrument footprint - larger volume of candidate meshes
(i.e. surface elements) to plan per programming period
» Enhanced agility: multiplication of acquisition opportunities and planning solutions
» Multi-Objective optimization: priority satisfaction, capacity (surface) maximization, age of
information, weather conditions...

Bottom line

» EO Mission Planning is a well-known multi-objective NP-hard optimization problem under uncertainty
» Current trends indicate a combinatorial explosion (# decision variables, # constraints) for future Earth Observation systems

Expectations
» Current Mission Planning solutions are based on (sub-optimal) heuristic algorithms (greedy or dynamic programming)
> Experiments on smaller instances of the problem have shown gains ranging from 10% to 20% between the optimum and the solution
obtained by current approximate algorithms
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EO Mission Planning Problem Statement

Mission Planning: Must determine an optimal acquisition plan for an Earth Observation satellite

Request
planned

Input data
» R is the set of acquisition requests, L. is the set of imaging attempts for request r € R.
> Vr € R, Vi € I, w,; is the score of the imaging attempt
»Vr €R, Vi€ I, t] is the start time of the imaging attempt

o . M
Decision variable anoceuvre

> x, ; is the binary variable indicating whether the candidate attempt i is selected in the plan K&
* The number of binary variables is Nyariaple = 27 |1+ |

Request not

) ' planned
Constraints AT,

» Maximally one assigned attempt i per requestr: Vr € R, ;¢ x,; < 1
» Some consecutive imagining attempts are not possible:

Possible
r1 . {(l ]) € (Ir1'1r2)|tr1 r2 & trz < trl + Tr1 ,acquisition + Tlr—1>]T2 maneuver} imaging
attempts
e Y(r, 1) € R%, withr, # 1, V(i, ]) € Byt Xp i Xy, ;=0
Objective: Total score of the schedule Selected
. _ o imaging
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Quantum Computing in a Nutshell

Superposition Principle 0
» A qubit can be seen as a superposition of two basis vectors

) = al0) + B|1)

* A n-qubit register represents a 2"-dimensional vector space,
allowing for exponentially greater information processing Classical bit

> = a|0> + B|1>
Quantum bit

Classical vs Quantum Computing

Classical Computation Quantum Computation

Superposition of length-N binary

A single length-N binary string

1 Initial State strings
e'g' 00 e M
T2 :
V2 2nx2n Unitary operators
Logic gates Quantum logic gates J T Ix? =1 # of components grows
. ‘ ~— exponentially with # of qubits
2 Apply Operations e.g.00 — 01 |00)+|11) |10)+|01) - 7 T e - p J q
eg—% 5 a, a, - a, ||x d,

ay, Ay o dy, || X d,
Read out Measure a
10)+/01)
3 Read Out e.g. MEASURE(:2221) > DLR

e.g. READ(01) > OBSERVED: 01 OBSERVED: either 10 or 01 LG G G LA T L AIRBUS

unitary

i



DEFENCE AND SPACE

Quantum Computing in a Nutshell

Quantum Annealing Computer (D-Wave)

« Not a general purpose quantum computer, but uses
guantum properties to solve discrete optimization
problems

« Natural evolution of quantum-mechanical
system (using quantum tunnelling) towards a ground
state minimizing its energy

Quantum Annealer
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General Purpose Quantum Computer (IBM, Google)
Quantum circuits are composed of elementary gates and
operate on qubits
QC equivalent to classical boolean feed-forward
networks, except they are reversible (i.e. quantum
circuits can be evaluated in both directions)
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Quantum Annealer in a Nutshell

Quantum Computing for Combinatorial Optimization

Quantum Annealing

Solves Quadratic Unconstrained Binary Optimization (QUBO) problems
l.e. minimmize H({xl}) = Zi Qiix; + Zi<j Ql-jxl-xj, where x € {O, 1}N
Requires to formulate your discrete optimization problem as a QUBO

QA can be seen as a stochastic process: several annealing runs are performed
from a given initial state (e.g. uniformly distributed quantum superposition of

all possible states)

After a fixed elapsed time, the final state is measured providing a solution sample
After a fixed number of runs, the solution sample having minimum energy is kept
QA remains an approximate optimization technique, but the number of runs can
be increased to reach a given probability of finding the exact solution

Cost

Configuration
2
DLR
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EO Mission Planning Problem as a QUBO

Quadratic Unconstrained Binary Optimization (QUBQO) formulation
> QUBO: minq(x) = x"Qx = ¥7_, Qjjx; + X7 -1 QjxXjxx With Q an upper-triangular quadratic matrix

» Constraint equations in a quadratic form:
* (1) : Max one imaging attempt per request : C, = X, X; ie;. i<; Min{wy, i, Wy j 12 1%,

* (2) : Non feasible maneuver C; = %, , i jer, . min{wy. ;, Wy, i} 1%, j

» Constraints are taken into account in the QUBO formulation to minimize
® q=C+/1uCu+/1tCt
*  With:

< C = —Xr e Wr,iXr,; IS the objective function in the original problem
s Ay Ap are penalty weights

» Choice of the penalty weights
» Sufficiently large enough such that X = arg min g(x) verifies our constraints, i.e. C,(X) =0 and C;(x) =0
X
+ We can demonstrate that any choice of penalty weight values such that both 1, > 1 and A; > 1 gives valid solutions 2
DLR
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Mapping a logical QUBO into a physical QUBO

11

Embedding

» Due to D-Wave architecture (chimera graph), a physical
gubit is not connected to every other qubit

» Embedding is the process of linking physical qubits
together to virtually enhance connectivity

> In our case, problem instances need to stay below

80 logical qubits to be embeddable on the D-Wave machine

Weight Distribution
» Couple physical qubits to chain
» Find chain coupling /.
> Distribute weight h;

» Classical Approach:
» Choose /. according to maximum coupling
> Split weight equally h;; — %

» Advanced Approaches:

» Find minimal J. without breaking chain
» Map to problem of graph expansion

4 March 2021 Agile Earth Observation Satellite Scheduling with a Quantum Annealer
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Mission Planning Simulation

Mission Planning problem instances
» Generated thanks to Airbus DS Mission Simulator (TEAM)

» Reduced instances with a small number of requests and
a coarse access discretization compared to real operations

> Different scenarios are considered to generate multiple instances,
enabling sensitive analysis and statistics on average performance

» Main parameters
» Number of acquisition requests -> Drives the number of
» Access discretization step decision variables

> Latitude range for Area of Interest > Drives the "NP-hardness” of
the planning problem
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Nb of requests = 11

Discretization step = 12s Discretization step =
Latitude range = 10° Latitude range = 1°
w0
;; nc €(10, 30]
(_3'1500 nc€(30, 40]
g ne € (40, 50] ! £
2 nc €(50,60] . i R
£1000 nc € (60, 801 i B
Q. &“l lg S " i
: A
@ 500 o gt 1 i
£ “ﬂ' il Tl 3.".1'!":""“
g Ll A
< 0

Problem Instances

Nb of requests = 12

30 40 50 60 70 80
Number of variables

Outcome of Embedding
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Evaluation on Classical Hardware

Plots for different sampling step and latitude gap Plots for different sampling step and latitude gap

Two classical algorithm have been considered

» An exact MIP solver with two variants 1= g‘p’ |
- pairwise exact solver: based on ILP where constraints i e -
correspond to pairs of conflicting attempts TS e 1 g 1 / =
« cligue exact solver: based on ILP where constraints are : . . " %
reformulated through the enumeration of all maximal cliques ‘% / ' P ‘§ =
» A greedy algorithm (similar to operational software), % _ §
showing a linear runtime (at least for small instances) = -

Exact solver

14 4 March 2021

Greedy algorithm

Agile Earth Observation Satellite Scheduling with a Quantum Annealer

number of binary variable

Exact solver
Run-time

number of binary variable

Greedy algorithm
Run-time
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0.030

Evaluation on D-Wave 2000Q Quantum Annealer oo

20.020

Performance Assessment methodology 25618
£

> A number of annealing runs is configured HRE

0.005

# exact solutions

» A success probability is derived: p = : 0.000
# annealing runs

(probability to yield an optimal solution)

» Assuming independence between runs, a time-to-solution
with 99% chance of optimality can be expressed

T - ln(l_o 99) B ) Performance D-Wave quantum annealer
as lgg = In(1-p) Annealing 10 \ r
, 107 . \\
£ \|
. . g \ /r"\\ A f\
D-Wave Configuration B V|
> Number of annealing runs (10000) 3 A\ \ \
> Annealing time (20 us) £ v ‘/\\ NaB \
» Choice of intra-logical qubit coupling J \'f 4 \ /'\/
> Embeddings: using all 5 D-Wave heuristic embeddings A
» Unembedding strategy: majority vote L .
number o mary variables

Probability of
success
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0

Time to solution with 99% certainty (sec)
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Benchmark 1: Classical vs Quantum Time to Exact Solution

Time to Exact Solution Benchmark
» Run time is averaged over all problem instances having
the same number of binary variables —— QA optimised-value

10— QA worst-case-treatment

b 10"~~~ Classical exact, pairwise
> Execution time for the pair-wise exact solver increases o — T Ciassiocal exact; 6lique
: : : : = 10°
exponentially with the number of binary variables g
w
_ _ o101
» Quantum annealing results (worst-case treatment, i.e. e
classical weighting approach) shows a similar slope and £ 10-2
a constant offset of about one order of magnitude. =
» By optimizing the coupling chain strength (optimized- g 10-3
value), quantum annealing performs much better
104

» Clique exact solver performs better than all other
methods for larger instances

30 40 50 60 70 80
Number of variables

Time to exact solution benchmark #
DLR

16 4 March 2021 Agile Earth Observation Satellite Scheduling with a Quantum Annealer AI RBUS



DEFENCE AND SPACE

Benchmark 2: Classical vs Quantum Quality of Solution

Quality of Solution Benchmark
» A fixed time budget is allocated to the solver (.i.e a fixed
number of runs for the quantum annealer)

» The approximation ratio corresponds to the objective
value of the best found solution divided by the optimal
objective value

» The greedy heuristic outperforms the quantum annealer
for similar execution times

» Only for larger execution times, the quantum annealer
yields better results than the greedy heuristic for smaller
instances

17 4 March 2021 Agile Earth Observation Satellite Scheduling with a Quantum Annealer

Approximation Ratio

0.6 \\o_:: ::: B
“*—0_‘:::_\‘21
0.5 —e— Greedy heuristic, max. 2ms :
—&— QA optimised-value, 100ms
0.4 —o— QA worst-case-treatment, 100ms
0.3 ~®- QAoptimised-value, 2ms
~®~ QA worst-case-treatment, 2ms
0.2
30 35 40 45 50 55 60 65 70

Number of variables

Quality of solution benchmark #
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Conclusion and Perspectives

arXiv paper: https://arxiv.org/abs/2006.09724

Technical achievements

« Classical vs Quantum benchmarks for a broad range of (small) satellite mission
planning problems

« Limited qubit connectivity, precision issues and coherence time remain a major
bottleneck for the D-Wave 2000Q processor.

« Although no quantum speedup was observed, the run-time performance on D-Wave
Q Annealer (at its current scale) is very promising

Perspectives

« Extra research will be required to make a better use of Q technology (embedding
techniques and mitigation of precision/errors for QA)
« To draw further conclusions, we need the Q technology (HW and SW) to increase in

maturity, which will happen in a short timeframe
« D-Wave Pegasus showcasing 5000 qubits and 16-connectivity
*  QAOA on Google Sycamore and IBM Q 53-qubit machines

g Dwave
D-Wave Pegasus Google Sycamore
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