

08/10/2024Commissariat à l’énergie atomique et aux énergies alternatives Auteur

FROM RESEARCH TO INDUSTRY

Commissariat à l’énergie atomique et aux énergies alternatives - www.cea.fr

 Automated Program Analysis for Security :

What About the Attacker ?

Sébastien Bardin

Senior Researcher, CEA Fellow

Head of the BINSEC team

Laboratoire de Sûreté et Sécurité des Logiciels

| 5Sébastien Bardin

DILS/LSL : Lab. For Software Security and Safety

| 6Sébastien Bardin

https://binsec.github.io/https://binsec.github.io/

The BINSEC Group:
 ADAPT FORMAL METHODS TO BINARY-LEVEL SECURITY ANALYSIS

| 7

TEAM WORK SINCE 2012 [+ UGA, LORIA, INRIA]

Sébastien Bardin

| 8

 Program-level security is a key aspect [yet, a single bug can ruin everything]


• Program Analysis (PL) and Formal Methods come from critical safety needs
 Damn good there (in the hands of experts)
 Allow to prove the absence of bugs, or find them thoroughly

• Now : a move from safety concerns to security concerns

Questions: how does security differ from safety?
• Answer : the attacker
• This talk: share some insights and results from the BINSEC team @DILS

Sébastien Bardin

This Talk in a Nutshell

| 16

THE SECURITY GAME

Sébastien Bardin

• The defender: try to secure the whole system

• The attacker: try to abuse the system
• Why: for fun & profit
• How: by taking advantage of a single flaws (bugs)

• The user: collateral damage

• The defender: try to secure the whole system

• The attacker: try to abuse the system
• Why: for fun & profit
• How: by taking advantage of a single flaws (bugs)

• The user: collateral damage

| 17

THE SECURITY GAME

•

Sébastien Bardin

• The defender: try to secure the whole system

• The attacker: try to abuse the system
• Why: for fun & profit
• How: by taking advantage of a single flaws (bugs)

• The user: collateral damage

• The defender: try to secure the whole system

• The attacker: try to abuse the system
• Why: for fun & profit
• How: by taking advantage of a single flaws (bugs)

• The user: collateral damage

Dissymetric battlefield
Advantage to the attacker
 (in most cases)

| 18

THE SECURITY GAME

•

Sébastien Bardin

• The defender: try to secure the whole system

• The attacker: try to abuse the system
• Why: for fun & profit
• How: by taking advantage of a single flaws (bugs)

• The user: collateral damage

• The defender: try to secure the whole system

• The attacker: try to abuse the system
• Why: for fun & profit
• How: by taking advantage of a single flaws (bugs)

• The user: collateral damage

Dissymetric battlefield
Advantage to the attacker
 (in most cases)

- most attacks come from
implementation bugs
- bugs are inevitable

| 22

OUR VIEW

Sébastien Bardin

Quite depressing ...

Quite depressing ...

What if software could be immune to large classes of bugs?

What if bugs could be found (and patch) automatically?

What if software could be immune to large classes of bugs?

What if bugs could be found (and patch) automatically?

Dissymetric battlefield
Advantage to the attacker
 (in most cases)

- most attacks come from
implementation bugs
- bugs are inevitable

| 25

OUTLINE

• Introduction [The Sad Truth]

• Reasoning about programs [A New Hope]

• What about the attacker? [The Evil Returns]

• Some results [Hard Battle In Progress]

• Conclusion, Take away and Disgression

Sébastien Bardin

| 27

THEN CAME FORMAL METHODS

Success in (regulated) safety-critical domains

Sébastien Bardin

| 28

THEN CAME FORMAL METHODS

Success in (regulated) safety-critical domains

• Reason about the
meaning of programs

• Reason about infinite
sets of behaviours• Typical ingredients:

transition systems,
automata, logic, …

Sébastien Bardin

| 29Sébastien Bardin

A DREAM COME TRUE … IN CERTAIN DOMAINS

| 31

Simple example

Sébastien Bardin

• Goal : prove result is positive

| 32

• X >=0 hence r >=0

Simple example

Sébastien Bardin

• Goal : prove result is positive

• X <0 hence r >=0 • r >=0

| 33

• X >=0 hence r >=0

PLEASE, PAY ATTENTION

Sébastien Bardin

• Goal : prove result is positive

• X <0 hence r >=0 • R >=0 ???????

• False cause of integer
underflow on x = minINT

| 34

Please

Sébastien Bardin

• False because of possible underflow

• A correct version

Can prove things
Can help find bugs

| 35

• Weakest precondition calculi [1969, Hoare]
• Abstract Interpretation [1977, Cousot & Cousot]
• Model checking [1981, Clarke - Sifakis]

They knew it was impossible, so they did it anyway

Answers
• Forget perfect precision: bugs xor proofs
• Or focus only on « interesting » programs
• Or put a human in the loop
• Or forget termination

Cannot have analysis that
• Terminates
• Is perfectly precise

On all programs

Sébastien Bardin

| 36

Formal methods zoo : so many of them, so little time for the talk

Sébastien Bardin

Full proofs

Bounded verification – bug finding

| 37

Formal methods zoo : so many of them, so little time for the talk

Sébastien Bardin

Full proofs

Bounded verification – bug finding

| 41

WHAT ABOUT USING THEM IN SECURITY ?

Sébastien Bardin

•

 Good Idea !

TLS 1.3

| 43Sébastien Bardin -- CEA LIST, 2019

Formally hardened UAV
• Developped from scratch

Survives 6 weeks of red team
attacks with full code & doc
access

Formally hardened UAV
• Developped from scratch

Survives 6 weeks of red team
attacks with full code & doc
access

| 44

End of the story ?

Sébastien Bardin

| 45

End of the story ? Not yet ...

Sébastien Bardin

| 48

OUTLINE

• Introduction [The Sad Truth]

• Reasoning about programs [A New Hope]

• What about the attacker? [The Evil Returns]

• Some results [Hard Battle In Progress]

• Conclusion, Take away and Disgression

Sébastien Bardin

| 50

EXAMPLE: side channel attacks

Sébastien Bardin

private char[4] secret;

boolean CheckPassword (char[4] input) {
 for (i=0 to 3) do
 if(input[i] != secret[i]) then

return false;
 endif
 endfor
 return true;
}

private char[4] secret;

boolean CheckPassword (char[4] input) {
 for (i=0 to 3) do
 if(input[i] != secret[i]) then

return false;
 endif
 endfor
 return true;
}

• Can you retrieve the secret with blackbox access?

• Yes, sometimes
• Come from the implementation

| 51

EXAMPLE 1: side channel attacks

Sébastien Bardin

private char[4] secret;

boolean CheckPassword (char[4] input) {
 for (i=0 to 3) do
 if(input[i] != secret[i]) then

return false;
 endif
 endfor
 return true;
}

private char[4] secret;

boolean CheckPassword (char[4] input) {
 for (i=0 to 3) do
 if(input[i] != secret[i]) then

return false;
 endif
 endfor
 return true;
}

• Can you retrieve the secret with blackbox access? • Here, yes

| 52

EXAMPLE 2: fault injection attacks

Sébastien Bardin

private char[4] secret;

void CheckandPrint (char[4] input) {

 If (input == secret) then get-access() else stop() ;
}

private char[4] secret;

void CheckandPrint (char[4] input) {

 If (input == secret) then get-access() else stop() ;
}

• Can you get access without knowning secret?
• Here, yes –

• not enough software counter measures

| 54

STANDARD PROGRAM ANALYSIS IS NOT (always) ENOUGH
FOR SECURITY

Sébastien Bardin

Introducing the attacker

Related to the safety vs security question

| 55

CHALLENGE: ATTACKER

Sébastien Bardin

Nature is not nice Attacker is evil

| 56Sébastien Bardin

ATTACKER in Standard Program Analysis

• We are reasoning worst case: seems very powerful!

| 57Sébastien Bardin

ATTACKER in Standard Program Analysis

• We are reasoning worst case: seems very powerful!

• Still, our current attacker plays the rules: respects the program interface
• Can craft very smart input, but only through expected input sources

| 58Sébastien Bardin

ATTACKER in Standard Program Analysis

• We are reasoning worst case: seems very powerful!

• Still, our attacker plays the rules: respects the program interface
• Can craft very smart input, but only through expected input sources

• What about someone who really do not play the rules?
• Side channel attacks
• Micro-architectural attacks
• Fault injections

| 59

HOW TO TAKE THE ATTACKERs INTO ACCOUNT ?

Sébastien Bardin

What they can do

What they can observe

What they look for

Expressivity
vs

How to handle it efficiently

| 61

HOW TO TAKE THE ATTACKERs INTO ACCOUNT ?

Sébastien Bardin

What they can do

What they can observe

What they look for

Expressivity
vs

How to handle it efficiently

Expressivity
vs

How to handle it efficiently

Expressivity
vs

How to handle it efficiently

NEXT : a few examples of how to take the attacker into account

Taken from our experience with the BINSEC platform
Binary-level security analysis

| 64

OUTLINE

• Introduction [The Sad Truth]

• Reasoning about programs [A New Hope]

• What about the attacker? [The Evil Returns]

• Some results [Hard Battle In Progress]

• Conclusion, Take away and Disgression

Sébastien Bardin

| 66

OUTLINE

• Introduction [The Sad Truth]

• Reasoning about programs [A New Hope]

• What about the attacker? [The Evil Returns]

• Some results [Hard Battle In Progress]
 detour : BINSEC
 Taking the attacker into account in BINSEC

• Conclusion, Take away and Disgression

Sébastien Bardin

| Sébastien Bardin

BACK TO BASICS

01001100
00101011
11000101
010 ..

010100111
101101110
111011000
0100 ..

EXECUTABLEOBJECT CODEASSEMBLY CODESOURCE CODE

COMPILE ASSEMBLE LINK

RUN

10110111
11101100
11000101
010 ..

THIRD PARTY
LIBRARY

HAND WRITTEN
ASSEMBLY

INLINE
ASSEMBLY

| 68Sébastien Bardin

WHY GOING DOWN TO BINARY-LEVEL SECURITY ANALYSIS?

Malware comprehensionMalware comprehensionNo source codeNo source code Post-compilationPost-compilation

Protection evaluationProtection evaluation Very-low level reasoningVery-low level reasoning

|

EXAMPLE: COMPILER BUG (?)

• secure source code
• insecure executable
• secure source code
• insecure executable

Sébastien Bardin

Commissariat à l’énergie atomique et aux énergies alternatives Auteur

BINSEC: brings formal methods to binary-level security analysis

 Advanced reverse

 Vulnerability analysis

 Binary-level security proofs

 Low-level mixt code (C + asm)

 …

ProtectProveBreak

 Explore many input at once
 Find bugs
 Prove security

 Multi-architecture support

 x86, ARM, RISC-V

 32bit, 64bit

https://binsec.github.io/https://binsec.github.io/

| 71

Given a path of a program
• Compute its « path predicate » f
• Solution of f = input following the path
• Solve it with powerful existing solvers

EXAMPLE 2SYMBOLIC EXECUTION (Godefroid 2005)

Find real bugs

Bounded verification

Flexible

Sébastien Bardin

|

INTERMEDIATE REPRESENTATION [CAV’11]

• Concise
• Well-defined
• Clear, side-effect free

Sébastien Bardin

|

INTERMEDIATE REPRESENTATION

• Concise
• Well-defined
• Clear, side-effect free

Sébastien Bardin

|

BINSEC / SOME HIGHLIGHTS

 Vulnerability finding in open source code

 Fuzzing + program analysis
Use-after-free, patch issues
 15 CVE, 37 bugs

 Black Hat 2020, RAID 2020

 Vulnerability finding in open source code

 Fuzzing + program analysis
Use-after-free, patch issues
 15 CVE, 37 bugs

 Black Hat 2020, RAID 2020

 Help reverse advanced malware

 Obfuscation detection & simplif
 12 min for +400k instr.

 Black Hat EU 2016, IEEE S&P 2017

 Help reverse advanced malware

 Obfuscation detection & simplif
 12 min for +400k instr.

 Black Hat EU 2016, IEEE S&P 2017

 Verify cryptographic implementations
 Side channels and Spectre attacks

 Check 350+ crypto implementations

 3 vulnerabilities introduced by compilers
 report possible flaws in standard protections

 IEEE S&P 2020, NDSS 2021

 Verify cryptographic implementations
 Side channels and Spectre attacks

 Check 350+ crypto implementations

 3 vulnerabilities introduced by compilers
 report possible flaws in standard protections

 IEEE S&P 2020, NDSS 2021

 Help handle inline assembly

 Verification-oriented decompilation
 Tested on all Debian C+asm chunks

 Interface conformance checking
 Found 100’s of errors
 propose patch, 10’s got accepted

 Help handle inline assembly

 Verification-oriented decompilation
 Tested on all Debian C+asm chunks

 Interface conformance checking
 Found 100’s of errors
 propose patch, 10’s got accepted

|

• Security scenarios
 Vulnerability analysis and automated exploit generation
 Side channel attacks
 Speculative side channel attacks
 Physical fault injection
 Bug priorisation

 Sébastien Bardin

Basic power

|

Vulnerability finding with symbolic execution
 (Godefroid et al., Cadar et al., Sen et al., etc.)

Intensive path exploration

Challenge = path
explosion

Sébastien Bardin

|

Vulnerability finding with symbolic execution
 (Godefroid et al., Cadar et al., Sen et al., etc.)

Intensive path exploration
Target critical bugs

Challenge = path
explosion

Sébastien Bardin

|

Vulnerability finding with symbolic execution
 (Heelan, Brumley et al.)

Intensive path exploration
Target critical bugs
Directly create simple
exploits

Challenge = path
explosion

Sébastien Bardin

|

• Security scenarios
 Vulnerability analysis and automated exploit generation
 Side channel attacks
 Speculative side channel attacks
 Physical fault injection
 Bug priorisation

 Sébastien Bardin

Can compare executions

|

« True » security properties (a.k.a. hyper-properties)

Information leakage Properties over pairs of executions

Sébastien Bardin – KLEE workshop
2022

|

SECURING CRYPTO-PRIMITIVES
-- [S&P 2020] (Lesly-Ann Daniel)

timing attacks
cache attacks
(secret-erasure)

Sébastien Bardin – KLEE workshop
2022

Relational symbolic execution
Follows paires of execution
Check for divergence

• Property over paires

|

SECURING CRYPTO-PRIMITIVES
-- [S&P 2020] (Lesly-Ann Daniel)

• 397 crypto code samples, x86 and ARM
• New proofs, 3 new bugs (of verified codes)
• 600x faster than prior workl

Relational symbolic execution
Follows paires of execution
Check for divergence
Sharing, dedicated preprocessing

Sébastien Bardin – KLEE workshop
2022

|

• Security scenarios
 Vulnerability analysis and automated exploit generation
 Side channel attacks
 Speculative side channel attacks
 Physical fault injection
 Bug priorisation

 Sébastien Bardin

Can observe more

|

Speculative executins and Spectre attacks

Sébastien Bardin – KLEE workshop
2022

|

Challenge !

Sébastien Bardin – 2022

|

Challenge !

Sébastien Bardin – 2022

• Extends M into M_spec
• Property over paires

|

Challenge !

Sébastien Bardin – 2022

• Extends M into M_spec
• Property over paires

• Some key finding : vulnerability in well known protection schemes
spectre-pht protections may be vulnerable to spectre-stl

|

• Security scenarios
 Vulnerability analysis and automated exploit generation
 Side channel attacks
 Speculative side channel attacks
 Physical fault injection
 Bug priorisation

 Sébastien Bardin

Can act on the execution

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Context

❏ Many techniques and tools for security evaluations.
❏ Usually consider a weak attacker, able to craft smart inputs.
❏ Real-world attackers are more powerful: various attack vectors + multiple actions

in one attack.

❏

Electromagnetic pulses Laser beamPower glitch Clock glitch

Hardware attacks

Rowhammer

Software-implemented hardware attacks

DVFSFaultline

Load Value InjectionRace condition Spectre

Micro-architectural attacks

Man-At-The-End attacks

 Sébastien Bardin

Sébastien Bardin

| 99Sébastien Bardin

FOCUS: Fault injection
-- [ESOP 23, POPL 24, PLDI 24]

 Waht about advanced attackers ?

 Recent work :
 support for attacker model
 Fault injection-like capabilities

 Goal

 Help security evaluators
 Help mitigation designers


WooKey bootloader
1. Find known attacks
2. Evaluate countermeasures from prior work
3. Find previously unreported attack path
4. Propose and check mitigation

| 100Sébastien Bardin

FOCUS: Fault injection
-- [ESOP 23, POPL 24, PLDI 24]

 Waht about advanced attackers ?

 Recent work :
 support for attacker model
 Fault injection-like capabilities

 Goal

 Help security evaluators
 Help mitigation designers


WooKey bootloader
1. Find known attacks
2. Evaluate countermeasures from prior work
3. Find previously unreported attack path
4. Propose and check mitigation

• Extends M into M_spec
• Property over paires

• Path explosion
• Dedicated optimizations

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Security scenarios using different fault models

CRT-RSA: [1]
❏ basic vulnerable to 1 reset → OK
❏ Shamir (vulnerable) and Aumuler

(resistant) → TO

Secret-keeping machine: [2]
❏ Linked-list implementation vulnerable

to 1 bit-flip in memory → OK
❏ Array implementation resistant to 1

bit-flip in memory → OK
❏ Array implementation vulnerable to 1

bit-flip in registers → OK

[1] Puys, M., Riviere, L., Bringer, J., Le, T.h.: High-level simulation for multiple fault injection evaluation. In: Data
Privacy Management, Autonomous Spontaneous Security, and Security Assurance. Springer (2014)
[2] Dullien, T.: Weird machines, exploitability, and provable unexploitability. IEEE Transactions on Emerging Topics
in Computing (2017)
[3] de Ferrière, F.: Software countermeausres in the llvm risc-v compiler (2021),
https://open-src-soc.org/2021-03/media/slides/3rd-RISC-V-Meeting-2021-03-30-15h00-Fran%C3%A7ois-de-Ferri
%C3%A8re.pdf
[4] Lacombe, G., Feliot, D., Boespflug, E., Potet, M.L.: Combining static analysis and dynamic symbolic execution
in a toolchain to detect fault injection vulnerabilities. In: PROOFS WORKSHOP (SECURITY PROOFS FOR
EMBEDDED SYSTEMS) (2021)

Secswift countermeasure: llvm-level CFI
protection by STMicroelectronics [3]
❏ SecSwift impementation [4] applied to

VerifyPIN_0 → early loop exit attack with 1
arbitrary data fault or test inversion in valid
CFG

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Case study

WooKey bootloader: secure data storage by ANSSI, 3.2k loc.
Goals:

1. Find known attacks (from source-level analysis)
a. Boot on the old firmware instead for the newest one [1]
b. A buffer overflow triggered by fault injection [1]
c. An incorrectly implemented countermeasure protecting against one test inversion [2]

2. Evaluate countermeasures from [1]
a. Evaluate original code → We found an attack not mentioned before
b. Evaluate existing protection scheme [1] (not enough)
c. Propose and evaluate our own protection scheme

[1] Lacombe, G., Feliot, D., Boespflug, E., Potet, M.L.: Combining static analysis and dynamic symbolic execution in a toolchain to detect fault injection vulnerabilities. In: PROOFS WORKSHOP
(SECURITY PROOFS FOR EMBEDDED SYSTEMS) (2021)
[2] Martin, T., Kosmatov, N., Prevosto, V.: Verifying redundant-check based countermeasures: a case study. In: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing. (2022)

 Sébastien Bardin

Sébastien Bardin

|

• Security scenarios
 Vulnerability analysis and automated exploit generation
 Side channel attacks
 Speculative side channel attacks
 Physical fault injection
 Bug priorisation

 Sébastien Bardin

Looks for strong attacks

| 107

Bug Priorization / Criticity Evaluation [CAV 18, CAV 21, FMSD 22, POPL 24, PLDI 24]

Sébastien Bardin

 Too many bugs. Which ones are relevant ?
 Defender can focus on these ones

 From the attacker point of view
 replicability
 Level of control


| 108

Bug Priorization / Criticity Evaluation [CAV 18, CAV 21, FMSD 22, POPL 24, PLDI 24]

Sébastien Bardin

 Too many bugs. Which ones are relevant ?
 Defender can focus on these ones

 From the attacker point of view
 replicability
 Level of control


 Especially, bugs reported by standard program analysis may be poorly
replicable
 Ex : fault injection with very specific values
 Ex : bugs depending on uninitialized memory
 Ex : bugs depending on random values
 ...


|

Bug Priorization / Criticity Evaluation [CAV 18, CAV 21, FMSD 22, POPL 24, PLDI 24]

Sébastien Bardin

• Modify the satisfaction relation

|

• Security scenarios
 Vulnerability analysis and automated exploit generation
 Side channel attacks
 Speculative side channel attacks
 Physical fault injection
 Bug priorisation
 BONUS : reverse of malware

Sébastien Bardin

Craft its own code

| 113Sébastien Bardin

Another Line of attack : ADVERSARIAL BINARY CODE

• self-modification
• encryption
• virtualization
• code overlapping
• opaque predicates
• callstack tampering
• …

• self-modification
• encryption
• virtualization
• code overlapping
• opaque predicates
• callstack tampering
• …

| 114Sébastien Bardin

FOCUS Reverse: THE XTUNNEL MALWARE
-- [BlackHat EU 2016, S&P 2017, ACSAC 2019, CCS 2022]

Two heavily obfuscated samples
• Many opaque predicates

Goal: detect & remove protections
• Identify 40% of code as spurious
• Fully automatic, < 3h [now : 12min]

Backward-bounded SE
+ dynamic analysis

| 162

OUTLINE

• Introduction [The Sad Truth]

• Reasoning about programs [A New Hope]

• What about the attacker? [The Evil Returns]

• Some results [Hard Battle In Progress]

• Conclusion, Take away and Disgression

Sébastien Bardin

| 163

• Taking the attacker into account in program analysis

• New scientific challenges grounded in real security
 Fruitful – Useful – Fun

STEP BACK

Sébastien Bardin

https://binsec.github.io/https://binsec.github.io/

• Observations

• Goal

• Actions

PEPR CYBERSECURITE

Secureval – Defmal – Rev

| 164

• Advanced automated reasoning as a game changer in cybersecurity
• Leverage and adapt best methods from safety-critical domains
• Fruitful !
• Beware of scalability and learning curve

• Yet, security is not safety
• the attacker must be taken into account
• field in progress

• Toward truly security-oriented program analysis !

SUMMARY

Sébastien Bardin

https://binsec.github.io/https://binsec.github.io/

• Observations

• Goal

• Actions

Empower experts
Help build highly secure systems

08/10/2024Commissariat à l’énergie atomique et aux énergies alternatives Auteur

 Commissariat à l’énergie atomique et aux énergies alternatives - www.cea.fr

THANK YOU

	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 22
	Diapo 25
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 41
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 48
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 61
	Diapo 64
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 84
	Diapo 88
	Diapo 90
	Diapo 91
	Diapo 93
	Diapo 94
	Diapo 97
	Diapo 98
	Diapo 99
	Diapo 100
	Diapo 103
	Diapo 104
	Diapo 105
	Diapo 107
	Diapo 108
	Diapo 109
	Diapo 112
	Diapo 113
	Diapo 114
	Diapo 162
	Diapo 163
	Diapo 164
	Diapo 168

