Apporter de la
confiance aux calculs en
arithmétique virgule
flottante

Jean-Michel Muller

CNRS - Laboratoire LIP
Septembre 2024

http://perso.ens-1lyon.fr/jean-michel.muller/

http://perso.ens-lyon.fr/jean-michel.muller/

Floating-Point Arithmetic

@ by far the most frequent solution for manipulating real numbers in

computers;
@ comes from the “scientific notation” used for 3 centuries by the scientific

community;

Sometimes a bad reputation. .. for bad reasons:

@ intrinsically approximate. . .

e but most data is approximate;
e but most numerical problems we deal with have no closed-form

solution;
e and in a subtle way (correct rounding), FP arithmetic is exact.

@ part of the literature comes from times when it was poorly specified;

— too often, viewed as a mere set of cooking recipes.

We wish to show that

@ it is a well specified arithmetic, on which one can build trustable

calculations;

@ one can prove useful properties and build efficient algorithms on FP

arithmetic;

@ and yet the proofs are complex: formal proof is helpful.

Desirable properties of an arithmetic system

Speed: tomorrow’s weather must be computed in less than 24 hours;

Reliability: all numerical computing is built upon basic arithmetic. If the
arithmetic collapses, everything collapses;

Accuracy;

Range: represent big and tiny numbers as well;

Size: silicon area for hardware, memory consumption for software;
Power consumption;

Easiness of implementation and use: If a given arithmetic is too arcane,
nobody will use it. ..

...of course, you can't win on all fronts.

Much change since the 70’s and 80’s: i) applications

Numerical simulation

S

@ trillions of operations

@ crash? just start again the
simulation (but not too often)

@ reproducibility may be useful.

Finance

Much change since the 70’s and 80’s: i) applications

Entertainment

@ trillions of operations

@ crash? just start again the @ Supermario’s pizza: no need to
simulation (but not too often) carefully follow the laws of physics;
@ reproducibility may be useful. @ fluidity matters;
Finance @ reproducibility: each player must
ed computing see the same game landscape.

Embedd

Artificial intelligence

@ neural net training: huge amount
of very low precision calculations.
@ speed: yes, but no need to be
faster than real time;

@ crash? ahem...

— certified calculations.

Much change since the 70’s and 80’s: ii) performance

@ the ratio . L
time to read/write in memory

time to perform +, x, =, i
has increased by a factor around 140 between 1986 and 2000;

@ It has continued to increase after 2000, but at a somehow slower pace;

@ the challenge is no longer to design fast arithmetic operators, but to be

able to feed them with data at a very high rate;

— first consequence: many new architectural concepts (multiple levels of
cache, pipelining, vector instructions, branch prediction);

— second consequence: incentive to use small formats whenever possible.

cache L1 main memory
1 T 50 100/
| . | . |
i 1 T T \ 1
Integer + FP + FP + FP sin
FP x FP /-

Much change since the 70’s and 80’s: iii) FP formats

8-bit emerging formats for 1A
BFloat16

single precision (a.k.a. binary32) binary16

double precision (a.k.a. binary64) binary32

binary64

binary128 (quad)

@ Combinatorial explosion of all the possible arithmetic operators of the
form Format 1 X Format 2 — Format 3

@ Need to develop and maintain math function libraries for all these formats.

Cleverly using these formats:

Locate when Locate when
low precision H big precision
puts us totally destroys
at an unacceptable risk. performance.

Numerical analysis, abstract interpretation, compilation, computer architecture,
formal proof, ... 8

A few weird arithmetic things

@ Excel’2007 (first releases), compute 65535 — 27, you get 100000;

@ 2020: in a competition, robotic car crash due to bad handling of
floating-point exception

@ if you have a Casio FX-92 pocket calculator, compute 11°/13, you will

get
156158413

3600
compute 97027288/89521, you will get

3457,

Base 2, precision-p FP arithmetic

In binary, precision-p Floating-Point (FP) arithmetic, a number x is represented

by two integers M (integral significand) and e (exponent):

M e e
X = -2 =mo.mimz - -mp_y -2

2/)71

where M, e € Z, with [M| < 2P — 1 and emin < € < emax. Additional

requirement: e smallest under these constraints.

@ x is normal if |x| > 2%min (implies |M| > 2P, i.e., mo = 1);

@ x is subnormal otherwise (mo = 0).

Subnormal numbers complicate the implementation of FP multiplication,
but. ..

10

without subnormals

0 2emin 2emint1 2€mint2

g=b & with subnormals
I Y O O | | | |
R 1 1 1 I
0 2emin 2®mintl 2€mint2

If a and b are FPN, a # b equivalent to “computed a — b # 0".

Theorem 1 (Hauser)

If the absolute value of the sum/difference of two FP numbers is < 2°min* then
it is a floating-point number (i.e., it is exactly representable in FP arithmetic).

11

Before 1985: a total mess. ..

Machine

Underflow A

Overflow A

DEC PDP-11. VAX,
F and D formats

DEC PDP-10;
Honeywell 600, 6000;
Univae 110x single:
IBM 709X, 704X

Burroughs 6X00 single
H-F 3000

IBM 360, 370 ndahll;
DG Eclipse M/G00; ..

Most handheld
caleulators

CDC 6X00, 7X00, Cyber

DEC VAX G format;
UNIVAC, 110X double

T R 2Y < 10

271 % 1.5 x 107

87 =88 x 107
270 & 8.6 x 107

167 = 5.4 x 10~

19~

9-976 o 1.5 % 10—2M

2102 15 5.6 x 10—

2197 = 1.7 x 10°8

2197 2 1.7 x 1078

870 = 4.3 x 1058
256 = 1.2 % 107

165 = 7.2 x 107

1100

21070 2 1.3 % 10322

FU02 2 9 ¢ 10307

Source: Kahan, Why do we need a Floating-Point Standard, 1981.

12

Before 1985: a total mess. ..

@ Some Cray computers: overflow in FP x detected just from the exponents
of the entries, in parallel with the actual computation of the product;

— 1 * x could overflow;

@ still on the Crays, only 12 bits of x were examined to detect a division by
0 when computing y/x

— if (x = 0) then z := 17.0 else z := y/x
could lead to zero divide error message... but since the multiplier too
examined only 12 bits to decide if an operand is zero,

if (1.0 * x = 0) then z := 17.0 else z := y/x
was just fine.

@ many systems, not enough “guard bits” for FP + — for x &~ 1, experts
knew that (0.5 — x) + 0.5 was much better than 1.0 — x.

Writing reliable and portable numerical software was a challenge!

13

IEEE-754 Standard for FP Arithmetic (1985, 2008, 2019)

put an end to a mess (no portability, variable quality);

leader: W. Kahan (father of the arithmetic of the HP35 and the Intel
8087);

formats (in radices 2 and 10);
specification of operations and conversions;
exception handling (max+1, 1/0, v/—2, 0/0, etc.);

successive versions of the standard: 2008, 2019, and 2029 is already in

preparation.

14

Correct rounding

@ the sum, product, ...of two FP numbers is not, in general, a FP number

— must be rounded;
@ the IEEE 754 Std for FP arithmetic specifies several rounding functions;

@ the default function is RN ties to even.

Correctly rounded operation: returns what we would get by exact operation

followed by rounding.
@ correctly rounded +, —, X, +, /. are required;

— when ¢ = a + b appears in a program, we get ¢ = RN (a + b).
— somehow deterministic arithmetic (more later).

15

ulp (unit in the last place), u (unit round-off)

Binary, precision-p FP arithmetic.

® If [x| € [25,2°%1), then ulp (x) = 2m*{eemin}—PF1,

e Frequently used for expressing errors of atomic functions;
e distance between consecutive FP numbers near x;

@ if 2°min < |x| < Q, then

Ix — RN (x)] < %mp(x) — pllogz Ixl]=p

therefore,
|x — RN (x)| < u-|x], (1)
with u =277 . Hence the relative error
|x — RN (x)|
|x]

(for x #0) is < w.

@ u, called unit round-off is frequently used for expressing relative errors.

16

With the math functions work still needs to be done

library GNU libe IML AMD Newlib OpenLibm Musl Apple LLVM MSVC FreeBSD ArmPL CUDA ROCm
version 240 202402 42 440 083 125 145 1818 2022 141 2404 1221 57.0
acos 0.523 0531 1.36 0930 0930 0.930 1.06 0.934 0930 152 <1.53~0.772
acosh 225 0509 132 225 2.25 225 225 322 225 (2660 252 0.661
asin 0.516 0.531 1.06 0.981 0981 0.981 0.709 105 0981 (269) 1.99 0.710
asinh 192 0.507 1.65 192 1.92 192 158 1.92 04_ 257 0.661
atan 0.523 0.528 0.863 0.861 0.861 0.861 0.876 0.863 0.861 @ 177 173
atanh 178 0.507 1 1.81 1.81 1.80 2,01 250 181 (300) 250 0.664
cbrt 3.67 0.523 0.670 0.668 0.668 0.729 1.86 0668 1.79 0.501 0.501
cos 0.516 0.518 0919 0.887 0834 0834 0948 Inf 0.897 0.834 Q.52 0.797
cosh 193 0.516 185 147 104 0523 191 147 193 140 0.563
erf 143 0.773 1.00 1.02 1.02 1.02 (641D 462 102 229 150 112
erfc 519 0.826 4.08 4.08 372 0D 846 4.08 171 451 408
exp 0.511 0.530 101 0.511 0.521 0.500 1.50 0.511 0.928 0.929

Largest errors in ulps for double-precision calculation of some math functions. ulp (x) is the distance
between two FP numbers in the neighborhood of x (so the largest values should be 0.5 — which is the
case with +, —, X, +, and \/)

(Extracted from Gladman, Innocente, Mather, and Zimmermann, Accuracy of Mathematical

Functions. . ., Aug. 2024)

17

Exception handling: the show must go on. ..

@ when an exception occurs: the computation must continue (default
behaviour);

@ two infinities and two zeros, with intuitive rules: 1/(+0) = +o0,
54 (—00) = —00...;

@ and yet, something a little odd: «/—0 = —0;
@ Not a Number (NaN): result of v/=5, (£0)/(£0), (£o0)/(E0),
(£0) x (£00), NaN +3, etc.
1
will give the very accurate answer 3 for huge x, even if x> overflows.
One should be cautious: behavior of

X2

Vx3+1

for large x.

18

With correct rounding and standardized exception handling,

arithmetic is almost deterministic

@ watch the dependency graph of operations (beware of “optimizing”
compilers);

@ watch the format of the implicit variables (such as the x+y in
(x+y) * (z+t));

@ math functions still a problem unless you use a correctly rounded library
such as Zimmermann & Sibidanov’s Core Math,* or LLVM libc.?

With enough care we can prove properties and build specific algorithms.

"https://core-math.gitlabpages.inria.fr/
*https://libc.11lvm.org/

19

https://core-math.gitlabpages.inria.fr/
https://libc.llvm.org/

A useful property: Sterbenz’ Theorem

Theorem 2 (Sterbenz)
Let a and b be positive FP numbers. If

< b<2a

N o

then a— b is a FP number
(— computed exactly, whatever the rounding function).

Beware: the “2"s in the formula are not the radix. In radices 10, 16 or 42, the
same property holds, still with 5 < b < 2a.

20

Example of use: implementation of trig. functions

precision-p FP arithmetic

@ cosine function: range reduction to small interval followed by polynomial
approximation in that interval;

@ range reduction: x — y = x — k7 such that |y| is small. If done naively
this is a very inaccurate operation.

@ assuming the largest value of k of interest fits in m < p bits, express 7 as

the sum of two FP numbers 71 and 72 such that
e 7 is closest to m among the FP numbers whose significand fits
in p — m bits;
o m = RN (7 — m).
Program: y < ((x - k*m1) - k*m)
By construction, A = k*m; is exact, and by Sterbenz Lemma, x —A is exact.

(Cody-Waite range reduction. Many improvements are possible)

21

The error of (RN) FP addition is a FPN

Lemma 3
Let a and b be two FP numbers. Let

s= RN(a+b)and r=(a+b)—s.

If no overflow when computing s, then r is a FP number.

Beware: does not always work with rounding functions # RN .

22

Get r: the fast2sum algorithm (Dekker)

Theorem 4 (Fast2Sum (Dekker))

(only radix 2). Let a and b be FP numbers, s.t. |a| > |b|. Following algorithm:
s and r such that

@ s+ r=a+ b exactly;

@ s is "the” FP number that is closest to a + b;

Algorithm 1 (FastTwoSum) C Program 1
s« RN(a+ b) s = atb;
z+ RN(s—a) z = s-a;
r< RN(b-2z) r = b-z;

Important remark: Proving the behavior of such algorithms requires use of the
correct rounding property.

23

The TwoSum Algorithm (Moller-Knuth)

@ no need to compare a and b;

@ 6 operations instead of 3 yet, on many architectures, very cheap in front
of wrong branch prediction penalty when comparing a and b;

@ works in all bases.

Algorithm 2 Knuth: if no underflow nor overflow occurs

(TwoSum) then a4+ b= s+ r, and s is nearest a + b.
s+ RN(a+ b) Boldo et al: formal proof + underflow does
a’ < RN(s—b) not hinder the result (overflow does).

b+ RN(s—2a")
3, RN(a—2a')
8« RN(b—b')
r < RN(53+51,)

TwoSum is optimal (no way of always ob-
taining the same result with less than 6 +
operations).

24

Example of application: computing x; + x> + x3 + -+ - + X,

Naive algorithm: Pichat, Ogita, Rump, and Oishi:
S < X1 S < X1
for i =2 to ndo e« 0
s+ RN(s+ x;) for i =2 to ndo
end for (s, &) < 2Sum(s, x;)
return s e+ RN(e+e)
end for

return RN (s + e)

Error bounds:

(n—1)-uY" ||

(remember: u=277)

|+ (e S

25

What about products ?

@ If a2 and b are FP numbers, then (under mild conditions),
r=ab— RN (ab) is a FP number;

@ We use the fused multiply-add (fma) instruction. It computes
RN (ab + ¢). First appeared in IBM RS6000, Intel/HP Itanium,
PowerPC. . . Specified since 2008.

p = RN(ab)

RN (ab — p)

@ obtained with algorithm TwoMultFMA {
r

— 2 operations only, gives p + r = ab.

26

Just an example: ad — bc with fused multiply-add

Kahan's algorithm for x = ad — bc:

W + RN (bc)

@ we have proven (2011):

|8 — x| < 2u|x]

“asymptotically optimal” error bound.

@ — rotations, complex arithmetic.

27

Formal verification of FP algorithms

@ starting point: the Pentium division bug (1994)

@ J. Harrison formalized FP arithmetic in HOL Light, formally proved the
division and sqrt algorithms of the Intel Itanium, and some elementary
function algorithms (around 1999);

@ D. Russinoff: similar things for AMD (more on the hardware side);

@ Sylvie Boldo and Guillaume Melquiond use the Coq proof assistant (Flocq
library, Gappa tool).

David ussin
Formal Verification

of Floating-Point
Hardware Design

Computer Arithmetic and
Formal Proofs

Sylvie Boldo and Melquiond

Veritying Fioating-point Algorithms
with the Coq System

28

Double-Word arithmetic

@ Fast2Sum, 2Sum and 2MultFMA return their result as the unevaluated

sum of two FP numbers.

@ idea: manipulate such unevaluated sums to perform more accurate
calculations in critical parts of a numerical program.

— “double word” or “double-double” arithmetic. Most recent avatar: Rump

and Lange's “pair arithmetic” (2020).

Definition 5

A double-word (DW) number x is the unevaluated sum x, + x¢ of two

floating-point numbers x, and x; such that

xn = RN (x).

29

DW+4DW: “accurate version”

Sum of two DW numbers. There exist a “quick & dirty" algorithm, but its
relative error is unbounded.

DWPIlusDW

(sh, s¢) < 2Sum(xp, yn)
(th, te) < 2Sum(xq, y¢)

c <+ RN (5@ + th)

(Vh, ve) < Fast2Sum(sp,)
w < RN (&, + v)

(zh, z¢) < Fast2Sum(vp, w)

S 2T PN E

return (zp, z/)

30

DW-+DW: “accurate version”

We have (after a very long and tedious proof):

Theorem 6
If p > 3, the relative error of Algorithm DWPIlusDW is bounded by

302
1—4u

=32+ 120 + 4804 + - - -, (2)

That theorem has an interesting history. ..

31

E i ‘Double- Word Arithmetic ~ 15res7

ALGORITHM &: - AccurateDWPIusDW (xy, . 91, 90). Calewlation of (xh,x0) + (9. 50) i bisary,

& (om5) 2Sum(en,90)
2 (1 te) - ZSumie.ye)

5 co RNG + 1,

& G ssantn.)
5 we)

© opee) o FasiSum(on w)
i)

Lietal. (2000, 2002) clam that i binary6d arith =53 of Algorithm 6
is upper bounded by 2 -2-1%. This bound is inco™~~ e

“in which one of the

u- e returned result is 2Sum(x;, Ye,

then the relative error of Algorithm 6 is

w]ow, without loss of generality, we

Note that this example is somehoy

w “genes .
2wy la o9y nonzero. Notice that 1 < xp, <

that is asymptotically equivalent (as p goes to
Now let us try to find a relative error bound. We are .

Tusonex 3.1, If p 2 3, then the relative error of Algorithm o ..

3t 12 st .
41200 + g+,

T
ohich i less than 3u + 134* as soon asp 2 6.

Note that the conditons on p (p > 3 for the bound () to hold, p 2 6 for the simplified bound
S0+ 13¢) are satisfied inal practical cases.
Paor. Fit,we cxcue he sraghfoand cuse ands is zero. We

can also quickly proceed with the case Xy +y, = hich s
equal to x +y, that s, the computation is oo assume
15 <23 b (uhichimpls, >) and x> 2implies
1< xy <2 - 2u, since xy is P numi
Defin 6 ¢ the eror ommitied at Line 3 ofthe lgorthm
a=e-(sett) @
and & asthe error committed at Line 5:
@ =w=(tr+vr).)
LI -x <y

~x4/2. Sterbenz Lemma, applied to the first line of the algorithm, implies
5= X4+, 5¢ = 0, and ¢ = RN(th) =
Define

2if y,
e imean

Vol 4, No 2, At

T5ress M. Joldes etal.

We have xi < 9n < (1-0) + 2(0-2),500 < x) +94 < 1+ 0+ (3 1) < 1 - ou. Also, since

sh =30
we finaly obtain
ou S sy S 1-ou ©)
We have lx| S wand |yl < Fu,s0
i (1+5)u and el s 0]

SrmU i O et sl e e From
point —n 1. Therefore, the Fast2Sum
Alganlhm oo s on's T o i algorithm, which implies

tvem s remm =Xyt
Equations (6) and (7) imply
b gie(1-Dusiods
50 lupl < 1and [uel < ¥. From the bounds on] and ful, we obtain:
f Loy
lea < gulplee +u) < gulp (w4 5) = 5 ®
and
1
lel < Julp bt + v + Julp (x-+)+ Sulplec +u0) | ©
Lemma 2.1 and ly| > ow imply that ither 5, £ = 0,or o = [RN(s, 0} = IRN(s, +)] >

04215, + 14 = 0, then vy, = v, = 0 and the sequel of the proof i straightforward. Therefore, in
the following, we assume [oy| 2 o',
N

* Iion

uf, then oz + b < ulonl + 4 = ou’ + i, which implies [wl = [RN(te + v,)] <

onl

« Tloal > ou, then, stac o & P e, o) i larger thm o e o the PP b
immeditely ‘above 0u?, whichis (1 + 2u)u?. Hence [on] > 0u?/(1— u), 50 lval > u-fon] +
au® 2 [vgl + [tel. So, [wl = [RN(te + ve)| < vy

Therefore, in all atline 6 lgorithm, and we have
nrx=urwertyta)

alarge bound, ymay H when x + y s very

etk o St Lomans. i, 4.1 1 s monsero sl of . Hence e 1t

wl<(+

, we have [x¢-+] S 3(xh + 9u). Let s now consider the two possible cases:

~30ch+98) < %+ g <~} (xn +), which implies
lemima applies to the floating-point addition of 5 and ¢
gorithm results in v, = 54 and v = 0. An immediate consequence is ¢ = 0,50 24 + 20 =
-+ = x-+ s the computation of -+ i erorless;

o Vol 44N e

32

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res7

ALGORITHM &: - AccurateDWPIusDW (xy, . 91, 90). Calewlation of (xh,x0) + (9. 50) i bisary,

1 shose) o 2Summ(en 9)
2 1) o tSumiscy)

Liet al. (2000, 2002) claim that
is upper bounded by 2 -2-%. T}

then the relative error c[Alsnnlhm 6is
2.24999999999999956
Note that this example is somehow “generic” In precision-p FP an
Zohrm == 1)- Ty = (2 - /2 b (2)2 5 Teads o areltive ertor
that is asymptotically equivalent (as p goes to infinity) to 2.
Now let us try to find a relative error bound. We are gnmg to show the following resul
Tusonex 3. If p 2 3, then the relative error of Algorithm 6 (AccurateDWPIusDW) is bounded

3

et ®
which s lessthan 347 + 134" as soon asp 2 6.
Note that the conditions on p (p > 3 for the bound (3)to hold, p > 6 for the simplified bound
50+ 130) aresatisied inall pracical cases,
-3

Poor. First = 4 /

o If —2(xp +yp) < xe+ye

L1 ~xy < g < /2. Strbenz Lemma, appled to the first line of the algorithm, implies
5= 0+ gh,5¢ = 0,and c = RN(1) =

(2w
7= 1 -1 < <~/

Vol 4, No 2, At

Ve uave [Ag T oyg) —

2 VALps \“ o v g S wand Iyl S s0

8 ather sy + ty, = 0, or |vg|
d the sequel of the proof is straightforward. Th*

Z N

—5(en + yn)
L T—— 9“1’)]1@5 to the ﬂoahnn_“,_.

T5ress M. Joldes etal.

We have —xy < Yy S (1-0) + (0=2),500 S %+ S 140+ (2 ~1) S 1~ 0w Also, since

‘we finlly obtain
ouss<1-ou ©

S () e s [

\{-Point exponent of s is a leas

IRN(sp, + ¢)| = |RNGZ s il

N which s

syt

i 2)u<ui
ounds on] and o, e obtaes
f Lo
lea < gulplee +u) < gulp (w4 5) = 5 ®
and
!
lel < Julp bt + v + Julp ((x-+)+ Sulptec +uo) | ©

(51 14)] 2

Lemma 2.1 and |s,| > ou imply that eiths
=0 “Therefore, in

T=TRN(s, + 0
O 1654 + 1y = 0, then vy = The sequel of the proof is straightforw:
the following, we assume [u3| > 0w’

o I oy

u?, then [ug + 1l < ulogl + = 0w + i, which implies [w] = [RN(t, +v)| <
oul
« Ifjoal > o, then, snce oy is a FP number, vy i arger than or equal to the FP number
immediately above o4, which s (1 + 2u)u?. Hence [uy] 2 ou/ (1~), s0 o3 2 - oy +
2 [or] + tel-So, Iw| = IRN(t +)| < [osl

Wl cases, Fast2Sum introduces no error atline 6 of the algorithm, and we have.

Brm=mrwExtyre (10)

alarge bound,because x-+ y may H whenx+y.
occurs thanks to Sterbenz Lemma. First, x; + g is & nonzero multiple of ou. Hence, since [x; +
9el S (1+ $)u, we have [x; +yel S 30, + y4). Let us now consider the two possible cases:

L5y, then Sterbenz
. Therefore line 4 of the al-
gori G e
Oy e

33

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15ress

. 2- (xh U by S 2xh + ya), then 3 (e +9e) < 30u + i+ xe+ue) = Flr+0),
and—3(x+) < (x¢ +ye). Hence, Ix; + ye| < Ix + yl, 5o ulp(x + g) < ulp(x + y). Com-
‘bined with Equation (9), this give:

= (3 \up'ny))q Pulp(r) £ 27 x +).
2.1 —x,/2 <y £

Notice that we have xh/2 < X+ Y S Xk, 5O Xp/2 < 5y S Zxp. Alen nasine bt
Il <.

I} <xp +ys < 2 4u Define

15res:10 M. Joldes et al.
© 2 du<x, +yn < 2o, then 2—4u < 5 < RN(2x) = 2, £ 4 — du and /| < 2u. We

Bete=xesyn
with | +yel < 2u, hence Iry] < 2u, and [rz] < u?. Now, Isc + thl < 4, 50 [cl < 4u, and
leil <24 Since s, > 2~ 4u and |c] < du, if p > 3, then Algorithm Fast2Sum introduces
no error at line 4 of the algorithm. Therefore,

ohtue=sateSa-dusdu
5004 <4 and [or] < 2u. Thus, lte + v < 2+ u’. Hence, either |t; + vel < 2u and || <
Fulplie +) S, o 2u Sty + ¢ <2+, in which case w=RN(te+ v) = 2u and
<. In all cases, e < u?. Also, 5, 22~ u and le] < 4u imply v, >2—8u, and

= 2u + u? implies fw| < 2u. Hence if p 2 3, then Algorithm Fast2Sum introduces

s Elementary calculus shows that fo it

When o = 1, wen

e,

mtz=vrwextyen
ath gl = e, + el < 30

3u

(1+ a/2)u, therefore L. Smcex+y> (m 1)+ (g~) > 2~ Gu, the relative error |nl/(x +y) is upper bounded
The bound (3) is probabl- & i
:)

It < (1+
Now, Is¢ + t4] < (1+ o), s0
lel S (1+o)u and || < ou’ (13)
Since sy 2 1/2and | < 3u,if p > 3, then Algorithm Fast2Sum introduces no error at line
4 of the algorithm, that s
PETErees
Therefore [y + el = Isa +¢l < o(1 ~2u) + (1 +)u < . This implies

ol <o and ful < Ju (19)

Thus ¢ +v| <u + $us0

)

wi< Zutat and lel< 2
i< 3 leel <

‘From Equations (11)and (13), we deduce si + ¢ = § —u(20 + 1),50 [u] 2 § — (20 +1).1f

23, then [> [w], introduces no error atline 6.of |
that is, 2 + 22 = v + w.
Therefore,

otz =xtytn,
with [g] = le; + ezl < %42 Since

P-du
1-du

x+yZ(1n’ul+(yh’u/Z)>{

‘the relative error [n/(x + y) is upper bounded by

Acm fiware, Vol 44, No. 2, Aticle

-6
‘The largest bound obtained in the various cases we have analyzed is

Jementary calculus shows that foru ,p = 6)thisisalways lessthan 3’ + 13*, 0

™ i)\l gt e gttt g
many tests is around 2.25 X 27 An example is the input values given in Equa-
tion (2), for which, with p <hmum arithmetic), we obtain a relative error equal to
2.24999999999999956. -+ X 2

34

DW-+DW: “accurate version”

So the theorem gives an error bound

3u?
1—4u

2
~3u°...

As said before, that theorem has an interesting history:

@ the authors of the first paper where a bound was given (in 2000) claimed
(without published proof) that the relative error was always < 21 (in
binary64 arithmetic);

@ when trying (without success) to prove their bound, we found an example
with error ~ 2.2517;

@ we finally proved the theorem, and Laurence Rideau (Inria Nice) started
to write a formal proof in Coq;

@ of course, that led to finding a (minor) flaw in our proof. ..

35

DW-+DW: “accurate version”

@ fortunately the flaw was quickly corrected (before final publication of the
paper. .. Phew)!

@ still, the gap between worst case found (=~ 2.254%) and the bound (~ 3u°)
was frustrating, so | spent months trying to improve the theorem. ..

@ and of course this could not be done: it was the worst case that needed
spending time!

@ we finally found that with

xp, = 1

xe = u-—u?

Yo = —% I 5
Ye = —% + u.

error % is attained. With p = 53 (binary64 arithmetic), gives

error 2.99999999999999877875 - - - x u>.

36

DW-+DW: “accurate version”

@ We suspect the initial authors hinted their claimed bound by
performing zillions of random tests

@ in this domain, the worst cases are extremely unlikely: you must
build them. Almost impossible to find them by chance.

37

DW x DW

@ Product z = (24, z¢) of two DW numbers x = (xn, x¢) and y = (ya, y¢);

@ several algorithms — tradeoff speed/accuracy. We just give one of them.

L= [22 | L 9 T 4o |

DWTimesDW

(¢ ce1) <= 2Prod(xn, yn)

ty < RN (Xh -yg)

Cpp — RN (tg + Xé}’h)

ce3 < RN (¢ + cr2)
(zh, z¢) + Fast2Sum(cp, cr3)
return (zp, zp)

S &2 ®KE

38

DW x DW

We have

Theorem 7 (Error bound for Algorithm DWTimesDW)

If p > 5, the relative error of Algorithm DWTimesDW?2 is less than or equal to

512 5,2
— < 5u°.
(14 u)?

and that theorem too has an interesting history!

@ initial bound 617

@ again, we tried formal proof...and it turned out the proof was based on a
wrong lemma.

39

after a few nights of very bad sleep, we found a turn-around. .. that also

improved the bound !

no proof of asymptotic optimality, but in binary64 arithmetic, we have
examples with error > 4.98u°;

(real consolation or lame excuse?) without the flaw, we would never have
found the better bound;

without the formal proof effort, the error would probably have remained
unnoticed (in this case, without serious consequence since the property
was true anyway, but...).

40

Conclusion

@ (almost) fully specified arithmetic: one can prove properties of (small
enough) programs, and build algorithms;

@ ongoing effort for also standardizing a kernel of math functions (at least
exp, sin, cos, log);

@ all of numerical computing is built from computer arithmetic: it must be
reliable;

@ for some algorithms (e.g., DW arithmetic, FP division algorithms) the
“paper proofs” are terrible: use of formal proof and computer algebra.

41

	Floating-Point Arithmetic

