
Apporter de la
confiance aux calculs en

arithmétique virgule
flottante

Jean-Michel Muller

CNRS - Laboratoire LIP
Septembre 2024

http://perso.ens-lyon.fr/jean-michel.muller/

1

http://perso.ens-lyon.fr/jean-michel.muller/

Floating-Point Arithmetic

by far the most frequent solution for manipulating real numbers in
computers;

comes from the “scientific notation” used for 3 centuries by the scientific
community;

Sometimes a bad reputation. . . for bad reasons:

intrinsically approximate. . .

but most data is approximate;
but most numerical problems we deal with have no closed-form
solution;
and in a subtle way (correct rounding), FP arithmetic is exact.

part of the literature comes from times when it was poorly specified;

→ too often, viewed as a mere set of cooking recipes.

2

We wish to show that

it is a well specified arithmetic, on which one can build trustable
calculations;

one can prove useful properties and build efficient algorithms on FP
arithmetic;

and yet the proofs are complex: formal proof is helpful.

3

Desirable properties of an arithmetic system

Speed: tomorrow’s weather must be computed in less than 24 hours;

Reliability: all numerical computing is built upon basic arithmetic. If the
arithmetic collapses, everything collapses;

Accuracy;

Range: represent big and tiny numbers as well;

Size: silicon area for hardware, memory consumption for software;

Power consumption;

Easiness of implementation and use: If a given arithmetic is too arcane,
nobody will use it. . .

. . . of course, you can’t win on all fronts.

4

Much change since the 70’s and 80’s: i) applications

Numerical simulation

trillions of operations

crash? just start again the
simulation (but not too often)

reproducibility may be useful.

Finance

5

Much change since the 70’s and 80’s: i) applications

Numerical simulation

trillions of operations

crash? just start again the
simulation (but not too often)

reproducibility may be useful.

Finance

Embedded computing

speed: yes, but no need to be
faster than real time;

crash? ahem. . .

→ certified calculations.

Entertainment

Supermario’s pizza: no need to
carefully follow the laws of physics;

fluidity matters;

reproducibility: each player must
see the same game landscape.

Artificial intelligence

neural net training: huge amount
of very low precision calculations.

6

Much change since the 70’s and 80’s: ii) performance

the ratio
time to read/write in memory
time to perform +,×,÷,√

has increased by a factor around 140 between 1986 and 2000;

It has continued to increase after 2000, but at a somehow slower pace;

the challenge is no longer to design fast arithmetic operators, but to be
able to feed them with data at a very high rate;

→ first consequence: many new architectural concepts (multiple levels of
cache, pipelining, vector instructions, branch prediction);

→ second consequence: incentive to use small formats whenever possible.

1 5 10 50 100

Integer + FP +

FP ×

FP ÷

FP
√

·

FP sin

cache L1 main memory

7

Much change since the 70’s and 80’s: iii) FP formats

single precision (a.k.a. binary32)
double precision (a.k.a. binary64)

⇒



8-bit emerging formats for IA
BFloat16
binary16
binary32
binary64
binary128 (quad)

Combinatorial explosion of all the possible arithmetic operators of the
form Format 1 × Format 2 → Format 3

Need to develop and maintain math function libraries for all these formats.

Cleverly using these formats:

Locate when
low precision

puts us
at an unacceptable risk.

←→
Locate when
big precision

totally destroys
performance.

Numerical analysis, abstract interpretation, compilation, computer architecture,
formal proof, . . . 8

A few weird arithmetic things

Excel’2007 (first releases), compute 65535− 2−37, you get 100000;

2020: in a competition, robotic car crash due to bad handling of
floating-point exception

if you have a Casio FX-92 pocket calculator, compute 116/13, you will
get

156158413
3600

π

compute 97027288/89521, you will get

345π.

9

Base 2, precision-p FP arithmetic

In binary, precision-p Floating-Point (FP) arithmetic, a number x is represented
by two integers M (integral significand) and e (exponent):

x =

(
M

2p−1

)
· 2e = m0.m1m2 · · ·mp−1 · 2e

where M, e ∈ Z, with |M| ≤ 2p − 1 and emin ≤ e ≤ emax. Additional
requirement: e smallest under these constraints.

x is normal if |x | ≥ 2emin (implies |M| ≥ 2p−1, i.e., m0 = 1);

x is subnormal otherwise (m0 = 0).

Subnormal numbers complicate the implementation of FP multiplication,
but. . .

10

0 2emin 2emin+1 2emin+2

0 2emin 2emin+1 2emin+2

aa− b b

aa− b b

without subnormals

with subnormals

If a and b are FPN, a ̸= b equivalent to “computed a− b ̸= 0”.

Theorem 1 (Hauser)
If the absolute value of the sum/difference of two FP numbers is ≤ 2emin+1 then
it is a floating-point number (i.e., it is exactly representable in FP arithmetic).

11

Before 1985: a total mess. . .

Source: Kahan, Why do we need a Floating-Point Standard, 1981.

12

Before 1985: a total mess. . .

Some Cray computers: overflow in FP × detected just from the exponents
of the entries, in parallel with the actual computation of the product;

→ 1 * x could overflow;

still on the Crays, only 12 bits of x were examined to detect a division by
0 when computing y/x

→ if (x = 0) then z := 17.0 else z := y/x
could lead to zero divide error message. . . but since the multiplier too
examined only 12 bits to decide if an operand is zero,

if (1.0 * x = 0) then z := 17.0 else z := y/x

was just fine.

many systems, not enough “guard bits” for FP + → for x ≈ 1, experts
knew that (0.5− x) + 0.5 was much better than 1.0− x .

Writing reliable and portable numerical software was a challenge!

13

IEEE-754 Standard for FP Arithmetic (1985, 2008, 2019)

put an end to a mess (no portability, variable quality);

leader: W. Kahan (father of the arithmetic of the HP35 and the Intel
8087);

formats (in radices 2 and 10);

specification of operations and conversions;

exception handling (max+1, 1/0,
√
−2, 0/0, etc.);

successive versions of the standard: 2008, 2019, and 2029 is already in
preparation.

14

Correct rounding

the sum, product, . . . of two FP numbers is not, in general, a FP number
→ must be rounded;

the IEEE 754 Std for FP arithmetic specifies several rounding functions;

the default function is RN ties to even.

Correctly rounded operation: returns what we would get by exact operation
followed by rounding.

correctly rounded +, −, ×, ÷, √. are required;

→ when c = a + b appears in a program, we get c = RN (a+ b).
→ somehow deterministic arithmetic (more later).

15

ulp (unit in the last place), u (unit round-off)

Binary, precision-p FP arithmetic.

If |x | ∈ [2e , 2e+1), then ulp (x) = 2max{e,emin}−p+1.

Frequently used for expressing errors of atomic functions;
distance between consecutive FP numbers near x ;

if 2emin ≤ |x | ≤ Ω, then

|x − RN (x)| ≤ 1
2

ulp (x) = 2⌊log2 |x|⌋−p,

therefore,
|x − RN (x)| ≤ u · |x |, (1)

with u = 2−p . Hence the relative error
|x − RN (x)|

|x |

(for x ̸= 0) is ≤ u.

u, called unit round-off is frequently used for expressing relative errors.

16

With the math functions work still needs to be done

Largest errors in ulps for double-precision calculation of some math functions. ulp (x) is the distance
between two FP numbers in the neighborhood of x (so the largest values should be 0.5 – which is the
case with +, −, ×, ÷, and √

.).

(Extracted from Gladman, Innocente, Mather, and Zimmermann, Accuracy of Mathematical

Functions. . . , Aug. 2024)

17

Exception handling: the show must go on. . .

when an exception occurs: the computation must continue (default
behaviour);

two infinities and two zeros, with intuitive rules: 1/(+0) = +∞,
5 + (−∞) = −∞. . . ;

and yet, something a little odd:
√
−0 = −0;

Not a Number (NaN): result of
√
−5, (±0)/(±0), (±∞)/(±∞),

(±0)× (±∞), NaN +3, etc.

f (x) = 3 +
1
x5

will give the very accurate answer 3 for huge x , even if x5 overflows.

One should be cautious: behavior of

x2
√
x3 + 1

for large x .

18

With correct rounding and standardized exception handling,
arithmetic is almost deterministic

watch the dependency graph of operations (beware of “optimizing”
compilers);

watch the format of the implicit variables (such as the x+y in
(x+y)*(z+t));

math functions still a problem unless you use a correctly rounded library
such as Zimmermann & Sibidanov’s Core Math,1 or LLVM libc.2

With enough care we can prove properties and build specific algorithms.

1https://core-math.gitlabpages.inria.fr/
2https://libc.llvm.org/

19

https://core-math.gitlabpages.inria.fr/
https://libc.llvm.org/

A useful property: Sterbenz’ Theorem

Theorem 2 (Sterbenz)
Let a and b be positive FP numbers. If

a

2
≤ b ≤ 2a

then a− b is a FP number
(→ computed exactly, whatever the rounding function).

Beware: the “2”s in the formula are not the radix. In radices 10, 16 or 42, the
same property holds, still with a

2 ≤ b ≤ 2a.

20

Example of use: implementation of trig. functions in
precision-p FP arithmetic

cosine function: range reduction to small interval followed by polynomial
approximation in that interval;

range reduction: x → y = x − kπ such that |y | is small. If done naively
this is a very inaccurate operation.

assuming the largest value of k of interest fits in m < p bits, express π as
the sum of two FP numbers π1 and π2 such that

π1 is closest to π among the FP numbers whose significand fits
in p −m bits;
π2 = RN (π − π1).

Program: y ← ((x - k*π1) - k*π2)

By construction, ∆ = k*π1 is exact, and by Sterbenz Lemma, x −∆ is exact.

(Cody-Waite range reduction. Many improvements are possible)

21

The error of (RN) FP addition is a FPN

Lemma 3
Let a and b be two FP numbers. Let

s = RN (a+ b) and r = (a+ b)− s.

If no overflow when computing s, then r is a FP number.

Beware: does not always work with rounding functions ̸= RN .

22

Get r : the fast2sum algorithm (Dekker)

Theorem 4 (Fast2Sum (Dekker))
(only radix 2). Let a and b be FP numbers, s.t. |a| ≥ |b|. Following algorithm:
s and r such that

s + r = a+ b exactly;

s is “the” FP number that is closest to a+ b;

Algorithm 1 (FastTwoSum)
s ← RN (a+ b)

z ← RN (s − a)

r ← RN (b − z)

C Program 1
s = a+b;
z = s-a;
r = b-z;

Important remark: Proving the behavior of such algorithms requires use of the
correct rounding property.

23

The TwoSum Algorithm (Moller-Knuth)

no need to compare a and b;

6 operations instead of 3 yet, on many architectures, very cheap in front
of wrong branch prediction penalty when comparing a and b;

works in all bases.

Algorithm 2
(TwoSum)

s ← RN (a+ b)

a′ ← RN (s − b)

b′ ← RN (s − a′)

δa ← RN (a− a′)

δb ← RN (b − b′)

r ← RN (δa + δb)

Knuth: if no underflow nor overflow occurs
then a+ b = s + r , and s is nearest a+ b.

Boldo et al: formal proof + underflow does
not hinder the result (overflow does).

TwoSum is optimal (no way of always ob-
taining the same result with less than 6 ±
operations).

24

Example of application: computing x1 + x2 + x3 + · · ·+ xn

Naive algorithm:
s ← x1

for i = 2 to n do
s ← RN (s + xi)

end for
return s

Pichat, Ogita, Rump, and Oishi:
s ← x1

e ← 0
for i = 2 to n do

(s, ei)← 2Sum(s, xi)

e ← RN (e + ei)

end for
return RN (s + e)

Error bounds:

(n − 1) · u
∑
|xi | u

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣+
(

(n − 1)u
1− (n − 1)u

)2 n∑
i=1

|xi |

(remember: u = 2−p)

25

What about products ?

If a and b are FP numbers, then (under mild conditions),
r = ab − RN (ab) is a FP number;

We use the fused multiply-add (fma) instruction. It computes
RN (ab + c). First appeared in IBM RS6000, Intel/HP Itanium,
PowerPC. . . Specified since 2008.

obtained with algorithm TwoMultFMA

{
p = RN (ab)

r = RN (ab − p)

→ 2 operations only, gives p + r = ab.

26

Just an example: ad − bc with fused multiply-add

Kahan’s algorithm for x = ad − bc:

ŵ ← RN (bc)

e ← RN (ŵ − bc)

f̂ ← RN (ad − ŵ)

x̂ ← RN (f̂ + e)

Return x̂ we have proven (2011):

|x̂ − x | ≤ 2u|x |

“asymptotically optimal” error bound.

→ rotations, complex arithmetic.

27

Formal verification of FP algorithms

starting point: the Pentium division bug (1994)

J. Harrison formalized FP arithmetic in HOL Light, formally proved the
division and sqrt algorithms of the Intel Itanium, and some elementary
function algorithms (around 1999);

D. Russinoff: similar things for AMD (more on the hardware side);

Sylvie Boldo and Guillaume Melquiond use the Coq proof assistant (Flocq
library, Gappa tool).

28

Double-Word arithmetic

Fast2Sum, 2Sum and 2MultFMA return their result as the unevaluated
sum of two FP numbers.

idea: manipulate such unevaluated sums to perform more accurate
calculations in critical parts of a numerical program.

→ “double word” or “double-double” arithmetic. Most recent avatar: Rump
and Lange’s “pair arithmetic” (2020).

Definition 5

A double-word (DW) number x is the unevaluated sum xh + xℓ of two
floating-point numbers xh and xℓ such that

xh = RN (x).

29

DW+DW: “accurate version”

Sum of two DW numbers. There exist a “quick & dirty” algorithm, but its
relative error is unbounded.

DWPlusDW

1: (sh, sℓ)← 2Sum(xh, yh)

2: (th, tℓ)← 2Sum(xℓ, yℓ)

3: c ← RN (sℓ + th)

4: (vh, vℓ)← Fast2Sum(sh, c)

5: w ← RN (tℓ + vℓ)

6: (zh, zℓ)← Fast2Sum(vh,w)

7: return (zh, zℓ)

ah I Xl 9h I Ye

v
v

s
t

25mm 25mm

v v

sh se th te

> <

±
C

] L

Fast 2am
d

'h I ve

v
v

z ,
Footage#

L

30

DW+DW: “accurate version”

We have (after a very long and tedious proof):

Theorem 6
If p ≥ 3, the relative error of Algorithm DWPlusDW is bounded by

3u2

1− 4u
= 3u2 + 12u3 + 48u4 + · · · , (2)

That theorem has an interesting history. . .

31

32

33

34

DW+DW: “accurate version”

So the theorem gives an error bound

3u2

1− 4u
≃ 3u2 . . .

As said before, that theorem has an interesting history:

the authors of the first paper where a bound was given (in 2000) claimed
(without published proof) that the relative error was always ≤ 2u2 (in
binary64 arithmetic);

when trying (without success) to prove their bound, we found an example
with error ≈ 2.25u2;

we finally proved the theorem, and Laurence Rideau (Inria Nice) started
to write a formal proof in Coq;

of course, that led to finding a (minor) flaw in our proof. . .

35

DW+DW: “accurate version”

fortunately the flaw was quickly corrected (before final publication of the
paper. . . Phew)!

still, the gap between worst case found (≈ 2.25u2) and the bound (≈ 3u2)
was frustrating, so I spent months trying to improve the theorem. . .

and of course this could not be done: it was the worst case that needed
spending time!

we finally found that with
xh = 1
xℓ = u − u2

yh = − 1
2 + u

2

yℓ = − u2

2 + u3.

error 3u2−2u3

1+3u−3u2+2u3 is attained. With p = 53 (binary64 arithmetic), gives
error 2.99999999999999877875 · · · × u2.

36

DW+DW: “accurate version”

We suspect the initial authors hinted their claimed bound by
performing zillions of random tests

in this domain, the worst cases are extremely unlikely: you must
build them. Almost impossible to find them by chance.

37

DW × DW

Product z = (zh, zℓ) of two DW numbers x = (xh, xℓ) and y = (yh, yℓ);

several algorithms → tradeoff speed/accuracy. We just give one of them.

DWTimesDW

1: (ch, cℓ1)← 2Prod(xh, yh)
2: tℓ ← RN (xh · yℓ)
3: cℓ2 ← RN (tℓ + xℓyh)

4: cℓ3 ← RN (cℓ1 + cℓ2)

5: (zh, zℓ)← Fast2Sum(ch, cℓ3)

6: return (zh, zℓ)

ah I Xl 9h I be

inv
÷:p ÷
-

vv v

FMA

✓

Clz
✓
<

+

✓

✓
Cls

z <
Festonna

38

DW × DW

We have

Theorem 7 (Error bound for Algorithm DWTimesDW)
If p ≥ 5, the relative error of Algorithm DWTimesDW2 is less than or equal to

5u2

(1 + u)2
< 5u2.

and that theorem too has an interesting history!

initial bound 6u2;

again, we tried formal proof. . . and it turned out the proof was based on a
wrong lemma.

39

DW × DW

after a few nights of very bad sleep, we found a turn-around. . . that also
improved the bound !

no proof of asymptotic optimality, but in binary64 arithmetic, we have
examples with error > 4.98u2;

(real consolation or lame excuse?) without the flaw, we would never have
found the better bound;

without the formal proof effort, the error would probably have remained
unnoticed (in this case, without serious consequence since the property
was true anyway, but. . .).

40

Conclusion

(almost) fully specified arithmetic: one can prove properties of (small
enough) programs, and build algorithms;

ongoing effort for also standardizing a kernel of math functions (at least
exp, sin, cos, log);

all of numerical computing is built from computer arithmetic: it must be
reliable;

for some algorithms (e.g., DW arithmetic, FP division algorithms) the
“paper proofs” are terrible: use of formal proof and computer algebra.

41

	Floating-Point Arithmetic

