Program failure seen from C }

Jens Gustedt

.................

INRIA — Camus rea—
ICube — ICPS #ICU3E

Université de Strasbourg S

Newin MEAF

g https://gustedt.gitlabpages.inria.fr/modern-c/ phse=s

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 1/50

https://gustedt.gitlabpages.inria.fr/modern-c/

Section 1

What about C?

Reality in the field

@ C is one of the most used programming languages
e operating systems

communication systems

visualization

embedded devices

high performance computing

(]
@
)

the description language for
processing capabilities
platform ABI

cross-language specification

Jens Gustedt (INRIA) Program failure seen from C

24 September 2024

3/50

Standardization

Timeline of the C language

What about C?

-

Year Name Alias Standard Changes
1972 first release —

1978 K&R C —

1989 C89 ANSI C ANSI X3.159-1989 ++
1990 C90 ISO C ISO/IEC 9899:1990 same
1995 C95 ../AMD1:1995 bugfix +
1999 C99 Co9X ISO/IEC 9899:1999 ++
2011 C11 CiX ISO/IEC 9899:2011 bugfix +
2018 C17 ISO/IEC 9899:2018 bugfix
2024 C23 c2X ISO/IEC 9899:2024 ++
202Y 2y ISO/IEC 9899:202Y ++

Jens Gustedt (INRIA)

Program failure seen from C

24 September 2024

4/50

What about C?

Standardization @/

A tedious process

@ constrained by the existing code base

@ guided by existing compiler implementations
@ driven by some passionate individuals
@ time consuming
@ slooooow
@ supported by
o very few companies (mostly US)
e some academia (mostly EU)
In France

@ driven by AFNOR
@ a national committee that is
o historically interested in C++
e open minded towards other programming languages

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024

5/50

What about C?

Standardization é/

POSIX

C is closely tied to the development of Unix

Single Unix Specification (SUS) — Portable Operating System Interface (POSIX)
o latest standards

o 1SO/IEC/IEEE 9945:2009/Cor 2:2017

o 1SO/IEC 9945:2024

POSIX uses C as normative reference

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 6 /50

What about C?

C is closely tied to the development of computing
C describes the basic features of computing devices
C is portable

C is stable

C is here to stay

Jens Gustedt (INRIA) Program failure seen from C

24 September 2024

7/50

What about C?

Overview

@ What about C?
© C's error model

© A program failure classification

@ Dealing with possible failure

Jens Gustedt (INRIA) Program failure seen from C

24 September 2024

8/50

Section 2

C’s error model

Error model @/

Errors result in failure

@ the best situation
e compiler error

@ visible manifestations of runtime errors
e processor halt

crash (computer, plane, satellite, ...)

intrusion

program exit

raising a signal

calling a signal handler

calling a constraint handler

wrong results

loss of money

program state corruption

platform corruption

data corruption

nothing at all
ens Gustedt (INRIA) Program failure seen from C 24 September 2024 10 /50

(=

C’s error model

Error models

Undefined Behavior versus Error‘

That, what is not defined in the C standard

@ Omission
o Identified error el

o detectable, but different resolution strategies vv ~™

. o~

e highly complex, undetectable

e disputed v A%
@ Optimization point -
@ Open design space -~

p gn sp ~ - -

Jens Gustedt (INRIA)

Program failure seen from C 24 September 2024

Section 3

A program failure classification

A program failure classification

four classes
wr

o v wrongdoings
° program state degeneration

e % unfortunate incidents
° @ series of unfortunate events

Jens Gustedt (INRIA) Program failure seen from C

24 September 2024

13 /50

A program failure classification

Wrongdoings

ddd
YN

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 14 /50

A program failure classification

PrYy
(00)
N

Wrongdoings i

Arithmetic violations

@ division by zero
@ modulo by zero

These are math problems! J

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 15 /50

A program failure classification

Wrongdoings

Arithmetic violations .. continued
negation of INT_MIN
negative bit shift

big positive bit shift

bit shift into the sign bit

PrYy
oo
N

These are number representation /operation problems!

Jens Gustedt (INRIA) Program failure seen from C

24 September 2024

16 /50

A program failure classification

PrYy
(00)
N

Wrongdoings i

Arithmetic violations .. continued

@ comparison of signed and unsigned integers

These are programming language design problems!

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024

17 /50

A program failure classification

Wrongdoings

Arithmetic violations ... continued

@ pointer addition that overflows array bounds
@ pointer comparison if not the same array object

PrYy
(00)
N

These computer architecture problems!

Jens Gustedt (INRIA) Program failure seen from C

24 September 2024

18 /50

N s iz il il
Wrongdoings i

Arithmetic violations .. end

Check your operands! J

 ensGustedt (NWA) ProgemfiwesenfomC ERE—— T

A program failure classification

PrYy
(o0
N

Wrongdoings i

Invalid conversions
e from an unsigned to a signed integer type, UINT_MAX — signed int
@ between floating point and integers, 2147483648.0 — signed int
@ between different floating point, 2147483648.0 — float
e from pointer to small integer, p — unsigned int
o from different pointer types, alignment!

.
Check your operands! J

Don't use casts!

@ Implicit conversions are mostly ok (with good compiler options)
e Explicit conversions (casts) are evil

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 20 /50

A program failure classification

Wrongdoings

Value violations

Invalid calls to the C library:

@ calling functions with wrong arguments
e null pointer
o large number
e zero size on allocation

@ result of operation is not representable

PrYy
(o0
N

Check your operands!

Jens Gustedt (INRIA) Program failure seen from C

24 September 2024

21/50

A program failure classification

PrYy
oo
N

Wrongdoings i

Type violations

@ Accessing an object with the wrong type.
@ Accessing a function with the wrong type.

Don’t use casts!

e Implicit conversions are mostly ok (with good compiler options)
e Explicit conversions (casts) are evil

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 22 /50

A program failure classification

Wrongdoings

Access violations, ..

@ null pointer dereference
@ accessing
e a missing object
e an element out-of-bounds
o fixed: array length +1
e dynamic: failed size tracking
e a member of an atomic structure or union

PrYy
(o0
N

Jens Gustedt (INRIA) Program failure seen from C

24 September 2024

23 /50

A program failure classification

PrYy
(o0
N

Wrongdoings i

Access violations, ... continued
@ modifying and reading from unsequenced subexpressions
modifying an unmutable object
storing from an overlapping object
calling free for an already freed pointer

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 24 /50

A program failure classification

PrYy
(o0
N

Wrongdoings i

Access violations, ... end

@ accessing

e an element of a flexible array member with no elements

e a volatile object from a non-volatile lvalue

e an object based on a restrict pointer non-exclusively

o a function through a falsely attributed prototype ([[unsequenced]], [[noreturn]])
@ issuing a call to longjmp with a dead function context
@ returning from a signal handler from a computational exception

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 25 /50

A program failure classification
Wrongdoings

Value misinterpretation

@ Access of uninitialized object
@ Access of object with “non-value representation”

PrYy
(00)
N

Initialize, always!

Don't fiddle with bits!

Don't overlay types that have padding bits!

. T S —

Jens Gustedt (INRIA) Program failure seen from C

24 September 2024

26 /50

A program failure classification

Wrongdoings i

Explicit invalidation

ptrdiff_t do_ptrdiff (unsigned char const* p,
unsigned char constx q) {
if (!p || !'q) unreachable();
return p - q;

"I solemnly swear that execution will never reach this place!”

annotate the interface!

ptrdiff_t do_ptrdiff (unsigned char const p[static 1],
unsigned char const ql[static 1]) {
return p - q;

}

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024

27 /50

A program failure classification

Wrongdoings

ddd
YN

Stick to the rules!

@ you need a good coding style
@ you need a good compiler
@ you need a good analyzer

Jens Gustedt (INRIA) Program failure seen from C

24 September 2024

28 /50

A program failure classification

Program state degradation

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 29 /50

A program failure classification

Program state degradation

Unbounded recursion

logical design error!

there is no generic solution

@ when cautious: manifests as crash or infinite loop
@ when unlucky: state corruption, data loss, money loss, crashing rockets, dead people

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 30/50

A program failure classification

Program state degradation

Storage exhaustion

design and capacity problem

@ when cautious: leaks caught at compile time or testing, errors caught at runtime
@ when hazardous: state corruption, data loss, money loss, crashing rockets, dead people

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 31/50

A program failure classification

Program state degradation @

scarce system resources

file (on disk or remote)
memory

bandwidth

CPUs

power

SCarce process resources

streams (# open FILE)

function call contexts

thread contexts

mutexes

condition variables

thread-specific storage
Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 32 /56

A program failure classification

Program state degradation

Monitor the program state

Not one single action at fault!

You are the traffic jam!

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 33 /50

A program failure classification

Unfortunate incidents

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 34 /50

A program failure classification

Unfortunate incidents

Collisions and race conditions
@ between different processes
@ between different threads
@ with signal handlers
@ when executing unsequenced expressions with side effects

use atomic tools

@ on the file system
e for control data

no side effects in expressions! J

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 35/50

A program failure classification

Unfortunate incidents

Inappropriate library calls and macro invocations

@ signal is allergic to multi-threading
@ setjmp

@ is restricted to certain syntactic constructs

e can only handle explicitly coded return values from longjmp
@ #pragma can change rounding mode and other FP state

inform yourself!
@ system manual
e C standard
@ colleagues (caution!)
@ Internet (caution!)

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024

36 /50

A program failure classification

Unfortunate incidents

Deadlocks

avoid using locks!

use atomic tools where possible

Jens Gustedt (INRIA)

Program failure seen from C

24 September 2024

37/50

A program failure classification

Unfortunate incidents

Escalating state degradation

@ after having ignored warning signs from
e wrondoings
e program state degradation

o difficult to trace
@ errors appear in seemingly random locations

Never ignore an error indication!

@ imminent risk: state corruption, data loss, money loss, crashing rockets, dead people

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 38/50

A program failure classification

Series of unfortunate events

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 39 /50

A program failure classification

Series of unfortunate events @
Livelock

SSSSS NSNS S

Questions about goals and design!

@ What is the global state that you want to achieve?
@ Should there even be an exit?

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 40 /50

Section 4

Dealing with possible failure

Avoiding failure

o C# C++
@ don't use casts

e casts paint over design errors
e implicit conversion void* — datax is fine
e don't even cast the return of malloc!

@ make your code zero-safe

@ zero is the universal value in C
o default initialization uses it
o for all data types the all-zero state must be valid

Jens Gustedt (INRIA) Program failure seen from C

24 September 2024

42 /50

Dealing with possible failure

Avoiding failure

@ initialize your variables

e use initializers wherever possible
e since C23, {} just works, even for VLA

@ prefer calloc over malloc

@ initialize static state needing runtime information

o at the start of main before all threads
e since C23, by means of call_once

Jens Gustedt (INRIA) Program failure seen from C

24 September 2024

43 /50

Dealing with possible failure

Avoiding failure

@ with C23 comes constexpr

constexpr int a = VERYBIGNUMBER;

only works if value is well defined for the target type
@ use signed and unsigned integers consistently
o sizeof has the unsigned type size_t
@ use nullptr

e NULL is problematic, in particular as a sentinel

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024

44 /50

Dealing with possible failure

Avoiding failure

@ use checked integer arithmetic
o with C23 comes <stdckdint.h>

if (ckd_add(&result, a, b)) error_out();

@ use proven tools for bit-fiddling
o with C23 comes <stdbit.h>
e stdc_bit_width(x) — 1+ [log, x]

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 45 /50

Dealing with possible failure

Avoiding failure

@ use [static n] parameters in headers and implementation

@ says that the caller has to provide at least n elements

int printf (const char format[restrict static 1], ...);

e in particular, no null pointer

e modern compilers can track misuse of null pointers

@ use const qualification where you may

e modern compilers can track if an object is modified/mutable

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024

46 /50

Dealing with possible failure

Avoiding failure

@ use variable length array parameters (VLA)

void mycpy(size_t n,
double x[restrict static n],
double const yl[restrict static n]);

e modern compilers can track the size of arrays
@ use pointers to variable length arrays (VLA) for large allocations

e permits comfortable use of multi-dimensional arrays
e avoids erroneous index calculations

@ use variable length arrays (VLA) for medium sized allocations

o yes, this uses the stack (in general)
e avoids over-pessimation of stack usage

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024

47 /50

Dealing with possible failure

Avoiding failure

@ prefer atomics to locks

o all accesses to an atomic variable are atomic

_Atomic(uint64_t) counter = O0;

++counter; // atomic

operation

e also the file system can be accessed atomically
o tmpfile
e tmpnam
e fopen with mode x

@ check the return of C library functions

Jens Gustedt (INRIA) Program failure seen from C

24 September 2024

48 /50

Dealing with possible failure

Develop a failure model

What is tollerable?

program crash

user feedback
controlled unwinding
nothing

What is possible?

signal handler

atexit handler

at_quick_exit handler

thread specific destructors (tss_dtor_t)

retry after
e manual cleanup
e garbage collection

Jens Gustedt (INRIA) Program failure seen from C

24 September 2024

49 /50

Dealing with possible failure

Detecting faulty code

@ use a modern compiler and modern C
o -Wall -std=C2x

@ use an analyzer
o —fanalyzer

@ use valgrind or similar for tests

No errors allowed!

Jens Gustedt (INRIA) Program failure seen from C

24 September 2024

50 /50

	What about C?
	C’s error model
	A program failure classification
	Dealing with possible failure

