
Program failure seen from C

Jens Gustedt

INRIA – Camus
ICube – ICPS

Université de Strasbourg

https://gustedt.gitlabpages.inria.fr/modern-c/

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 1 / 50

https://gustedt.gitlabpages.inria.fr/modern-c/

What about C?

Section 1

What about C?

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 2 / 50

What about C?

Reality in the field
C is one of the most used programming languages

operating systems
communication systems
visualization
embedded devices
high performance computing

C is the description language for
processing capabilities
platform ABI
cross-language specification

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 3 / 50

What about C?

Standardization
Timeline of the C language

Year Name Alias Standard Changes
1972 first release —
1978 K&R C —
1989 C89 ANSI C ANSI X3.159-1989 ++
1990 C90 ISO C ISO/IEC 9899:1990 same
1995 C95 …/AMD1:1995 bugfix +
1999 C99 C9X ISO/IEC 9899:1999 ++
2011 C11 C1X ISO/IEC 9899:2011 bugfix +
2018 C17 ISO/IEC 9899:2018 bugfix
2024 C23 C2X ISO/IEC 9899:2024 ++
202Y C2Y ISO/IEC 9899:202Y ++

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 4 / 50

What about C?

Standardization
A tedious process

constrained by the existing code base
guided by existing compiler implementations
driven by some passionate individuals
time consuming
slooooow
supported by

very few companies (mostly US)
some academia (mostly EU)

In France
driven by AFNOR
a national committee that is

historically interested in C++
open minded towards other programming languages

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 5 / 50

What about C?

Standardization

POSIX
C is closely tied to the development of Unix

Single Unix Specification (SUS) — Portable Operating System Interface (POSIX)

latest standards
ISO/IEC/IEEE 9945:2009/Cor 2:2017
ISO/IEC 9945:2024

POSIX uses C as normative reference

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 6 / 50

What about C?

C is closely tied to the development of computing
C describes the basic features of computing devices
C is portable
C is stable
C is here to stay

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 7 / 50

What about C?

Overview

1 What about C?

2 C’s error model

3 A program failure classification

4 Dealing with possible failure

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 8 / 50

C’s error model

Section 2

C’s error model

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 9 / 50

C’s error model

Error model
Errors result in failure

the best situation
compiler error

visible manifestations of runtime errors
processor halt
crash (computer, plane, satellite, …)
intrusion
program exit
raising a signal
calling a signal handler
calling a constraint handler
wrong results
loss of money
program state corruption
platform corruption
data corruption
nothing at all

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 10 / 50

C’s error model

Error models

Undefined Behavior versus Error

That, what is not defined … in the C standard

Omission
Identified error

detectable, but different resolution strategies
highly complex, undetectable
disputed

Optimization point
Open design space

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 11 / 50

A program failure classification

Section 3

A program failure classification

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 12 / 50

A program failure classification

A program failure classification

four classes

wrongdoings
program state degeneration
unfortunate incidents
series of unfortunate events

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 13 / 50

A program failure classification

Wrongdoings

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 14 / 50

A program failure classification

Wrongdoings

Arithmetic violations
division by zero
modulo by zero

These are math problems!

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 15 / 50

A program failure classification

Wrongdoings

Arithmetic violations … continued
negation of INT_MIN
negative bit shift
big positive bit shift
bit shift into the sign bit

These are number representation/operation problems!

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 16 / 50

A program failure classification

Wrongdoings

Arithmetic violations … continued
comparison of signed and unsigned integers

These are programming language design problems!

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 17 / 50

A program failure classification

Wrongdoings

Arithmetic violations … continued
pointer addition that overflows array bounds
pointer comparison if not the same array object

These computer architecture problems!

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 18 / 50

A program failure classification

Wrongdoings

Arithmetic violations … end

Check your operands!

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 19 / 50

A program failure classification

Wrongdoings
Invalid conversions

from an unsigned to a signed integer type, UINT_MAX → signed int
between floating point and integers, 2147483648.0 → signed int
between different floating point, 2147483648.0 → float
from pointer to small integer, p → unsigned int
from different pointer types, alignment!

Check your operands!

Don’t use casts!
Implicit conversions are mostly ok (with good compiler options)
Explicit conversions (casts) are evil

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 20 / 50

A program failure classification

Wrongdoings

Value violations
Invalid calls to the C library:

calling functions with wrong arguments
null pointer
large number
zero size on allocation

result of operation is not representable

Check your operands!

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 21 / 50

A program failure classification

Wrongdoings

Type violations
Accessing an object with the wrong type.
Accessing a function with the wrong type.

Don’t use casts!
Implicit conversions are mostly ok (with good compiler options)
Explicit conversions (casts) are evil

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 22 / 50

A program failure classification

Wrongdoings

Access violations, …
null pointer dereference
accessing

a missing object
an element out-of-bounds

fixed: array length +1
dynamic: failed size tracking

a member of an atomic structure or union

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 23 / 50

A program failure classification

Wrongdoings

Access violations, … continued
modifying and reading from unsequenced subexpressions
modifying an unmutable object
storing from an overlapping object
calling free for an already freed pointer

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 24 / 50

A program failure classification

Wrongdoings

Access violations, … end
accessing

an element of a flexible array member with no elements
a volatile object from a non-volatile lvalue
an object based on a restrict pointer non-exclusively
a function through a falsely attributed prototype ([[unsequenced]], [[noreturn]])

issuing a call to longjmp with a dead function context
returning from a signal handler from a computational exception

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 25 / 50

A program failure classification

Wrongdoings

Value misinterpretation
Access of uninitialized object
Access of object with “non-value representation”

Initialize, always!

Don’t fiddle with bits!

Don’t overlay types that have padding bits!

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 26 / 50

A program failure classification

Wrongdoings
Explicit invalidation

ptrdiff_t do_ptrdiff(unsigned char const* p,
unsigned char const* q) {

if (!p || !q) unreachable();
return p - q;

}

”I solemnly swear that execution will never reach this place!”

annotate the interface!

ptrdiff_t do_ptrdiff(unsigned char const p[static 1],
unsigned char const q[static 1]) {

return p - q;
}

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 27 / 50

A program failure classification

Wrongdoings

Stick to the rules!
you need a good coding style
you need a good compiler
you need a good analyzer

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 28 / 50

A program failure classification

Program state degradation

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 29 / 50

A program failure classification

Program state degradation
Unbounded recursion

logical design error!

there is no generic solution
when cautious: manifests as crash or infinite loop
when unlucky: state corruption, data loss, money loss, crashing rockets, dead people

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 30 / 50

A program failure classification

Program state degradation

Storage exhaustion

design and capacity problem

when cautious: leaks caught at compile time or testing, errors caught at runtime
when hazardous: state corruption, data loss, money loss, crashing rockets, dead people

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 31 / 50

A program failure classification

Program state degradation
scarce system resources

file (on disk or remote)
memory
bandwidth
CPUs
power

scarce process resources

streams (# open FILE)
function call contexts
thread contexts
mutexes
condition variables
thread-specific storage

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 32 / 50

A program failure classification

Program state degradation

Monitor the program state

Not one single action at fault!

You are the traffic jam!

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 33 / 50

A program failure classification

Unfortunate incidents

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 34 / 50

A program failure classification

Unfortunate incidents

Collisions and race conditions
between different processes
between different threads
with signal handlers
when executing unsequenced expressions with side effects

use atomic tools
on the file system
for control data

no side effects in expressions!

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 35 / 50

A program failure classification

Unfortunate incidents
Inappropriate library calls and macro invocations

signal is allergic to multi-threading
setjmp

is restricted to certain syntactic constructs
can only handle explicitly coded return values from longjmp

#pragma can change rounding mode and other FP state

inform yourself!
system manual
C standard
colleagues (caution!)
Internet (caution!)

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 36 / 50

A program failure classification

Unfortunate incidents

Deadlocks

avoid using locks!
use atomic tools where possible

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 37 / 50

A program failure classification

Unfortunate incidents

Escalating state degradation
after having ignored warning signs from

wrondoings
program state degradation

difficult to trace
errors appear in seemingly random locations

Never ignore an error indication!
imminent risk: state corruption, data loss, money loss, crashing rockets, dead people

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 38 / 50

A program failure classification

Series of unfortunate events

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 39 / 50

A program failure classification

Series of unfortunate events

Livelock

Questions about goals and design!
What is the global state that you want to achieve?
Should there even be an exit?

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 40 / 50

Dealing with possible failure

Section 4

Dealing with possible failure

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 41 / 50

Dealing with possible failure

Avoiding failure

C ≠ C++

don’t use casts
casts paint over design errors
implicit conversion void* → data* is fine
don’t even cast the return of malloc!

make your code zero-safe
zero is the universal value in C
default initialization uses it
for all data types the all-zero state must be valid

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 42 / 50

Dealing with possible failure

Avoiding failure

initialize your variables
use initializers wherever possible
since C23, {} just works, even for VLA

prefer calloc over malloc

initialize static state needing runtime information
at the start of main before all threads
since C23, by means of call_once

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 43 / 50

Dealing with possible failure

Avoiding failure

with C23 comes constexpr

constexpr int a = VERYBIGNUMBER;

only works if value is well defined for the target type

use signed and unsigned integers consistently
sizeof has the unsigned type size_t

use nullptr

NULL is problematic, in particular as a sentinel

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 44 / 50

Dealing with possible failure

Avoiding failure

use checked integer arithmetic
with C23 comes <stdckdint.h>

if (ckd_add(&result, a, b)) error_out();

use proven tools for bit-fiddling
with C23 comes <stdbit.h>
stdc_bit_width(x) → 1 + ⌊log2 𝑥⌋

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 45 / 50

Dealing with possible failure

Avoiding failure

use [static 𝑛] parameters in headers and implementation
says that the caller has to provide at least 𝑛 elements

int printf(const char format[restrict static 1], ...);

in particular, no null pointer

modern compilers can track misuse of null pointers

use const qualification where you may
modern compilers can track if an object is modified/mutable

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 46 / 50

Dealing with possible failure

Avoiding failure

use variable length array parameters (VLA)

void mycpy(size_t n,
double x[restrict static n],
double const y[restrict static n]);

modern compilers can track the size of arrays

use pointers to variable length arrays (VLA) for large allocations
permits comfortable use of multi-dimensional arrays
avoids erroneous index calculations

use variable length arrays (VLA) for medium sized allocations
yes, this uses the stack (in general)
avoids over-pessimation of stack usage

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 47 / 50

Dealing with possible failure

Avoiding failure

prefer atomics to locks
all accesses to an atomic variable are atomic

_Atomic(uint64_t) counter = 0;
...
++counter; // atomic operation

also the file system can be accessed atomically
tmpfile
tmpnam
fopen with mode x

check the return of C library functions

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 48 / 50

Dealing with possible failure

Develop a failure model
What is tollerable?

program crash
user feedback
controlled unwinding
nothing

What is possible?
signal handler
atexit handler
at_quick_exit handler
thread specific destructors (tss_dtor_t)
retry after

manual cleanup
garbage collection

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 49 / 50

Dealing with possible failure

Detecting faulty code

use a modern compiler and modern C
-Wall -std=C2x

use an analyzer
-fanalyzer

use valgrind or similar for tests

No errors allowed!

Jens Gustedt (INRIA) Program failure seen from C 24 September 2024 50 / 50

	What about C?
	C’s error model
	A program failure classification
	Dealing with possible failure

